针对农业温室环境中,由于超宽带(Ultra-wideband,UWB)定位技术干扰免疫差和统计特性未知而面临定位精度不足的问题,本文提出一种基于改进自适应卡尔曼滤波(Improved adaptive Kalman filter,IAKF)算法的UWB定位技术。首先,引入异常检测机制,以识别滤波过程中的发散现象;进而,通过实时更新量测噪声协方差矩阵,抑制滤波发散,在噪声强波动情况下增强算法适应性;同时,开展3种不同环境噪声下仿真定位试验,对比分析UWB、IAKF、自适应卡尔曼滤波(Adaptive Kalman filter,AKF)及卡尔曼滤波(Kalman filter,KF)算法性能。仿真结果表明,IAKF算法展现出更强的适应性及鲁棒性。以自主开发农用履带车辆为定位载体,于农业温室环境中开展UWB定位试验。试验结果表明,温室环境中,履带车辆在视距(Line of sight,LOS)和非视距(Non line of sight,NLOS)场景下,较AKF和KF算法,IAKF算法定位精度分别提高22.2%、13.0%和20.0%、15.4%。
及时检测绝缘子自爆缺陷对输电线路安全可靠运行具有重要意义。针对深度学习模型对具有小目标特征的绝缘子自爆缺陷检测能力不足、模型结构复杂等问题,提出了一种基于轻量化改进YOLOv8n输电线路绝缘子自爆检测方法。以YOLOv8n网络为基础模型,通过添加小目标检测模块来捕捉绝缘子自爆的小目标细节信息,提高其检测能力;进一步,引入SIoU损失函数,解决原始CIoU损失函数未考虑真实框与预测框之间的方向问题,增强目标定位准确性;最后,使用通道剪枝方法,对改进模型进行剪枝,去除模型冗余参数、减少浮点运算量,降低模型计算成本和复杂度。在构建的绝缘子自爆数据集上的实验结果表明,轻量化改进方法的平均准确性均值达到97.1%,其浮点运算量和体积分别为4.9 G FLOPS和1.82 MB,仅为原始模型的60.5%和29.7%,合理兼顾了绝缘子自爆检测的准确性和模型复杂性。在另一个输电线路巡检数据集中,本研究方法对其他类型的小目标检测准确性也较好,具有良好的推广应用前景。
暂无评论