针对水面目标检测中的噪声干扰和小目标的漏检问题,提出一种改进YOLOv8的水面小目标检测算法YOLOv8-WSSOD(YOLOv8-water surface small object detection).首先,为降低水面复杂环境在主干网络下采样过程中产生的噪声干扰,提出基于BiFor...
详细信息
针对水面目标检测中的噪声干扰和小目标的漏检问题,提出一种改进YOLOv8的水面小目标检测算法YOLOv8-WSSOD(YOLOv8-water surface small object detection).首先,为降低水面复杂环境在主干网络下采样过程中产生的噪声干扰,提出基于BiFormer双层路由注意力机制构建的C2fBF(C2f-BiFormer)模块,在特征提取过程中保留细粒度的上下文特征信息;其次,针对水面小目标的漏检问题,新增一个更小的检测头,提升网络对小目标的感知力,并在Neck端引入GSConv和Slim-neck,减轻模型复杂度并保持精度;最后,使用MPDIoU损失函数解决CIoU损失函数的局限性,以提高模型检测准确率.实验结果表明,相较于原始YOLOv8算法,该算法在水面小目标上平均准确率mAP@0.5提升了4.6%,mAP@0.5:0.95提升了2.2%,并且改进后的算法检测速度达到86f/s,能有效实现对水面小目标快速、准确的检测.
在传统的图像描述生成任务中,已有方法对图像的描述仅仅停留在浅层,并缺乏真实世界知识的指导,难以挖掘出对象在特定背景下的逻辑语义关系。新闻文本的引入为图像描述带来了新的可能,同时对模型的学习能力有了更高要求;此外,新闻图集中往往存在多幅图像,且相互之间联系紧密,导致现有单图描述生成方法不适用于新闻图集描述生成。针对上述问题,本文提出了一种基于图文双向引导注意力(image and text bidirectional guidance attention,ITBGA)的新闻图集描述方法,以图集作为研究对象,并辅以对应的新闻文本作为背景知识,基于ITBGA分别实现粗、细两个粒度的跨模态信息交互,并通过指针网络辅助命名实体词生成。在本文构建的新闻图集数据集上进行了实验验证,结果表明ITBGA能有效提升描述文本的质量,在关键的CIDEr指标上达到了最优。
城市车载网络环境中高效的中继选择有利于保证安全消息传输的及时性和可靠性。针对现有中继选择方法在复杂交通环境下难以准确评估中继,且在车流密集场景下性能不佳的问题,提出一种基于多属性决策和k-means聚类的中继选择方法(multi-attribute decision-making and k-means clustering based relay selection,MKRS)。首先充分考虑当前转发车辆与候选中继之间的相对距离和相对速度,候选中继的接收信号强度和区域密度等4种评估指标,分别基于序关系法和熵权法计算候选中继评估指标的主、客观权重,并利用简单加权法计算其综合权重,进一步得到能够更加准确体现候选中继性能的综合效用值。在此基础上,采用基于k-means聚类和优先级-退避时间的方法选出最佳中继。实验结果表明所提MKRS与对比方法相比,在保证较好一跳距离和一跳时延的同时具有最快的传播速度。
暂无评论