基于荧光淬灭原理的光纤氧传感器一直是许多研究工作的重点。介绍了一种制作简单、成本低的光纤氧传感器制造方法。该方法基于荧光淬灭原理,在光纤末端涂覆荧光材料铂八乙基卟啉(PtOEP)实现的。传感器中荧光材料被395nm的紫光激发,并由Y形光纤引导,使用广州犀谱光电USB2000+光谱仪记录荧光的发光强度时序图。最后得到的PtOEP的( I 0/ I 100 )-1的值为0.78,即光纤氧传感器的灵敏度为0.78,而且,斯特恩-沃尔默(Stern-Volmer)图显示出很好的线性特性。从氧气到空气环境的响应时间为24 s,从空气环境到氧气的响应时间是5 s。结果表明,基于荧光淬灭原理的光纤氧传感器具有较高的灵敏度和更快的响应时间。
本文使用火焰熔融拉锥的方法,通过控制火焰的高度及拉锥速度,成功制备了具有微拱型渐变区的新型微纳光纤器件。理论计算表明,微拱型渐变区有利于激发出强度相当的高阶微纳光纤传输模式,从而增加了传输光谱中由模间干涉导致的透射谷的深度。实验表明,该新型微纳光纤器件透射谷深度达到18 d B,当轴向应变量增加时,透射谷向短波长方向移动,轴向应变灵敏度为-13.1 pm/με,比光纤光栅应变传感器提高一个数量级,是传统直线型微纳光纤灵敏度的3倍,线性度为99.15%。这种具有微拱型渐变区的微纳光纤器件具有灵敏度高、机械性能好以及便于与现有光纤系统集成等优点。并且结构简单,易于制备,可广泛应用于各种物理、化学和生物传感和探测领域。
暂无评论