缺血性卒中是一种高致残率和致死率的脑血管疾病,早期治疗以溶栓和神经保护为主。神经保护剂可改善溶栓再通引发的缺血再灌注损伤,但因存在脑靶向性不足和作用靶点单一等缺陷,在临床应用中疗效欠佳。聚多巴胺纳米颗粒是一种具有自由基清除、多功能修饰、光热转换等特性的纳米材料,在神经保护、药物靶向、多靶点治疗方面具有独特优势,为突破目前神经保护治疗的局限提供了一个多功能集合平台。本文总结了聚多巴胺纳米颗粒的抗炎抗氧化的神经保护作用,系统阐述了聚多巴胺纳米颗粒通过各种途径促进神经保护剂靶向大脑,并结合其本身的自由基清除功能发挥多靶点治疗,为疗效确切的脑保护治疗方案的开发和应用提供新的策略。Ischemic stroke is a cerebrovascular disease with a high disabling and lethal rate, and early treatment is mainly thrombolysis and neuroprotection. Neuroprotective agents can improve ischemia-reperfusion injury caused by thrombolytic recanalization, but they have poor efficacy in clinical application due to shortcomings such as insufficient brain targeting and single target. Polydopamine nanoparticles are nanomaterials with the characteristics of free radical scavenging, multifunctional modification, photothermal conversion, etc., which have unique advantages in neuroprotection, drug targeting, and multi-target therapy, and provide a multifunctional platform for breaking through the limitations of current neuroprotective therapy. In this paper, we summarize the neuroprotective effects of polydopamine nanoparticles on anti-inflammatory and antioxidant effects, and systematically elaborate that polydopamine nanoparticles promote the targeting of neuroprotective agents to the brain through various pathways, and combine their own free radical scavenging functions to exert multi-target therapy, providing a new strategy for the development and application of brain protection therapy regimens with definite efficacy.
暂无评论