随着5G技术的兴起,当前已有许多工业互联网设备部署在5G网络中.然而,互联网充满着各种网络攻击,需要使用更新的安全防护技术对工业互联网的设备进行防护.因此,针对当前5G网络已大量使用互联网协议第6版(Internet Protocol version 6,IP...
详细信息
随着5G技术的兴起,当前已有许多工业互联网设备部署在5G网络中.然而,互联网充满着各种网络攻击,需要使用更新的安全防护技术对工业互联网的设备进行防护.因此,针对当前5G网络已大量使用互联网协议第6版(Internet Protocol version 6,IPv6)的现状,提出基于IPv6的移动目标防御与访问控制方法.首先,提出兼容IPv6互联网传输的随机地址生成机制、支持两端时差冗余的随机地址机制以及支持多线程的无锁随机IP地址选取机制,以辅助移动目标防御所需的随机IP地址生成,并致力于提升基于软件定义网络技术的移动目标处理器性能和稳定性.其次,提出通过移动目标处理器对原始数据包进行随机地址替换的方法,以实现随机地址在标准互联网中传输,随后结合访问控制技术,进而保护工业互联网设备不受外部设备干扰和攻击.最后,通过一系列实验证明提出的移动目标防御与访问控制技术对原始网络影响较小,并且安全性极高,具备实际落地应用的前提条件.
同时定位与建图(Simultaneous Localization and Mapping,SLAM)技术使移动机器人在缺乏先验环境信息的条件下,能够在估计自身位姿的同时构建环境地图。然而,在海洋、矿洞等复杂环境中,移动机器人容易受到随机突变噪声的干扰,进而导致SLA...
详细信息
同时定位与建图(Simultaneous Localization and Mapping,SLAM)技术使移动机器人在缺乏先验环境信息的条件下,能够在估计自身位姿的同时构建环境地图。然而,在海洋、矿洞等复杂环境中,移动机器人容易受到随机突变噪声的干扰,进而导致SLAM性能下降。现有的概率假设密度(Probability Hypothesis Density,PHD)SLAM算法未考虑随机突变噪声,受到干扰时在线自适应调整能力较弱。为解决移动机器人因随机突变噪声导致状态估计和建图精度降低的问题,本文结合强跟踪滤波器(Strong Tracking Filter,STF)与PHD滤波器,提出了一种基于强跟踪的自适应PHD-SLAM滤波算法(Strong Tracking Probability Hypothesis Density Simultaneous Localization and Mapping,STPHD-SLAM)。该算法以PHD-SLAM为框架,针对过程噪声协方差和量测噪声协方差随机突变问题,本文通过在特征预测协方差中引入STF中的渐消因子,实现了对特征预测的自适应修正和卡尔曼增益的动态调整,从而增强了算法的自适应能力。其中渐消因子根据量测新息递归更新,确保噪声突变时每个时刻的量测新息保持正交,从而充分利用量测信息,准确并且快速地跟踪突变噪声。针对渐消因子激增导致的滤波器发散问题,本文对渐消因子进行边界约束,提高算法的鲁棒性。仿真结果表明,在量测噪声协方差和过程噪声协方差随机突变的情况下,所提算法相较于PHD-SLAM 1.0和PHD-SLAM 2.0的定位和建图精度都得到了提高,同时保证了计算效率。
暂无评论