针对工业场景下经典迭代最近点(iterative closest point,ICP)算法在点云位姿估计中初始位姿敏感度高、迭代时间长的问题,提出一种基于RGB图像的快速点云配准方法。分别采集RGB图像和点云数据,使用ORB(oriented FAST and rotated BRIEF...
详细信息
针对工业场景下经典迭代最近点(iterative closest point,ICP)算法在点云位姿估计中初始位姿敏感度高、迭代时间长的问题,提出一种基于RGB图像的快速点云配准方法。分别采集RGB图像和点云数据,使用ORB(oriented FAST and rotated BRIEF)算法提取RGB图像特征点,利用Brute-Force算法进行初始匹配,采用随机采样一致性算法优化匹配,得到单应矩阵和旋转平移矩阵,求解汽车零配件初始位姿。进一步采用主成分分析法和双向KD树近邻搜索算法对预处理后的点云数据进行精确配准。实验结果表明,所提算法相较ICP算法,在配准速度和精度上分别提高了87.2%和5.0%,相对于FR-ICP(fast and robust iterative closest point)算法,在配准精度相当的情况下,配准速度提高了55%。
随着深度学习的发展,基于CNN和Transformer的语义分割在遥感领域得到了广泛应用。然而,这些方法仍存在局限:前者缺乏远程建模能力,后者受制于计算复杂性。最近,Mamba所提出的视觉状态空间(visual state space,VSS)模型展现了其能够对远...
详细信息
随着深度学习的发展,基于CNN和Transformer的语义分割在遥感领域得到了广泛应用。然而,这些方法仍存在局限:前者缺乏远程建模能力,后者受制于计算复杂性。最近,Mamba所提出的视觉状态空间(visual state space,VSS)模型展现了其能够对远程关系进行有效线性计算的能力。受此启发,提出了一种基于CNN和视觉状态空间的遥感影像语义分割网络,以克服现有方法的局限。首先,构建一个由CNN和VSS分支组成的架构,并行提取多尺度特征信息,挖掘局部相关性并捕获远程上下文依赖关系,并将VSS代替Transformer应用于解码器;其次,设计了协同调制模块学习空间权重调制特征,以自适应融合双分支语义信息,增强语义信息间的依赖关系;最后,使用额外的辅助头优化网络,通过辅助损失函数引导模型在训练中更多关注关键区域。该方法在LoveDA和Vaihingen数据集上进行实验验证,其mF1指标分别为69.61%和90.53%,mIoU指标分别为53.95%和83.13%。实验结果表明,所提出的模型在这两个公共数据集上表现优于其他分割模型。
暂无评论