现有细粒度分析方法未能充分利用细粒度情绪信息来增强上下文与评价目标间的语义关联性,且对多词构成的评价目标仅平均化处理,损失了词间内容与关系信息,导致分类不精准。针对上述问题,本文提出了一种基于细粒度信息交互注意力(interactive attention with fine-grained information,FGIA)的情绪分类方法,通过采用更加细粒度的注意力机制来实现评价目标与上下文之间的充分交互,同时得到目标对上下文以及上下文对目标的交互注意力表示,进而辅助完成情绪分类。在本文构建的COVID-19网络舆情中文数据集上进行了实验验证,结果表明,FGIA能够有效地提升网络舆情数据情绪分类的准确性,相比于主流的分类方法,在各项评价指标上均取得了较高的提升。
密文策略属性基加密(ciphertext-policy attribute-based encryption,CP-ABE)技术可以在保证数据隐私性的同时提供细粒度访问控制.针对现有的基于CP-ABE的访问控制方案不能有效解决边缘计算环境中的关键数据安全问题,提出一种边缘计算环境中基于区块链的轻量级密文访问控制方案(blockchain-based lightweight access control scheme over ciphertext in edge computing,BLAC).在BLAC中,设计了一种基于椭圆曲线密码的轻量级CP-ABE算法,使用快速的椭圆曲线标量乘法实现算法加解密功能,并将大部分加解密操作安全地转移,使得计算能力受限的用户设备在边缘服务器的协助下能够高效地完成密文数据的细粒度访问控制;同时,设计了一种基于区块链的分布式密钥管理方法,通过区块链使得多个边缘服务器能够协同地为用户分发私钥.安全性分析和性能评估表明BLAC能够保障数据机密性,抵抗共谋攻击,支持前向安全性,具有较高的用户端计算效率,以及较低的服务器端解密开销和存储开销.
暂无评论