实际工业过程中,量测数据除了在线仪表采集的快速率数据,还有离线化验等慢速率辅助量测数据.为了更好地利用离线化验数据,增加在线估计的精度,针对随机跳变系统,引入迁移学习思想,提出迁移交互多模型估计(Transfer interacting multiple model state estimator,IMM-TF)新策略.首先,将离线化验数据的边缘分布作为可以迁移的知识,迁移到贝叶斯后验分布,实现辅助量测数据的充分利用.其次,利用KL(Kullback-Leibler)散度度量知识迁移前后任务间的差异性,求解最优的贝叶斯迁移估计器.同时,结合慢速率量测,利用平滑策略获取待迁移的估计值,解决多率量测下的迁移估计难题.然后,利用影响力函数构建辅助量测数据与估计性能之间的解析关系,从而对迁移效果进行定量评价.最后,通过在目标跟踪实例中的应用,表明所提方法的有效性及优越性.
为了提高比例积分微分(proportional integral differential,PID)控制器的性能,提出了一种基于子空间模型的PID控制器参数优化方法。首先,利用子空间矩阵等式推导出控制器性能关于PID控制器参数的显式表达。然后,利用具有设定值激励的...
详细信息
为了提高比例积分微分(proportional integral differential,PID)控制器的性能,提出了一种基于子空间模型的PID控制器参数优化方法。首先,利用子空间矩阵等式推导出控制器性能关于PID控制器参数的显式表达。然后,利用具有设定值激励的闭环数据,分别对过程模型和随机扰动模型对应的子空间矩阵进行辨识,并且将估计的动态矩阵直接应用在最优性能的计算中,得到最优的控制器参数值。最后,通过数值仿真和工业实例验证了该方法的有效性。
暂无评论