为了提高比例积分微分(proportional integral differential,PID)控制器的性能,提出了一种基于子空间模型的PID控制器参数优化方法。首先,利用子空间矩阵等式推导出控制器性能关于PID控制器参数的显式表达。然后,利用具有设定值激励的...
详细信息
为了提高比例积分微分(proportional integral differential,PID)控制器的性能,提出了一种基于子空间模型的PID控制器参数优化方法。首先,利用子空间矩阵等式推导出控制器性能关于PID控制器参数的显式表达。然后,利用具有设定值激励的闭环数据,分别对过程模型和随机扰动模型对应的子空间矩阵进行辨识,并且将估计的动态矩阵直接应用在最优性能的计算中,得到最优的控制器参数值。最后,通过数值仿真和工业实例验证了该方法的有效性。
近红外光谱分析在工业过程故障检测方面具有独特的优势,是一种准确且高效的方法。结合互信息熵和传统的主成分分析,对近红外光谱特征信息进行提取,通过构建过程的模式来刻画工业过程的运行状态。利用近红外光谱数据,从有机分子含氢基团振动信息中获取工业系统的过程模式,从微观分子层面探索提高工业过程故障检测准确率的有效方法,结合贝叶斯统计学习技术,提出了基于近红外光谱数据的工业过程故障检测技术。针对近红外光谱信息量丰富,谱带较宽,特征性不强的特点,首先对工业过程不同运行状态下的近红外光谱吸光度数据进行一阶导数预处理,采用主成分分析法(principal component analysis,PCA)压缩光谱数据量,扩大不同运行状态下光谱特征信息的差异性,提取光谱的内部特征信息。然后采用互信息熵(mutual information entropy,MIE)作为光谱特征信息相关性度量函数,基于最小冗余最大相关算法进一步减少光谱特征信息间的冗余并最大化光谱特征信息与类别的相关性,弥补了PCA无监督特征波长选择的不足,提出一种基于PCA-MIE的过程模式构建方法,获得的过程模式子集更紧凑更具类别表现力。再利用贝叶斯统计学习算法,根据后验概率对构建的模式子集进行决策,判别生产过程的正常状态和故障状态。由于过程模式子集结合了PCA浓聚方差的优势和互信息熵相关性测度的特征信息选择方法,蕴含了更多的近红外光谱的本质信息与内在规律,从而更能刻画工业过程的运行状态。接着,设置测试准确率TA作为评估标准,用以评价故障检测方法的性能效果。最后利用某化工厂提供的原油脱盐脱水过程近红外光谱数据对所提方法进行验证,并与传统近红外光谱特征信息提取方法PCA和MIE方法性能进行对比分析,结果表明基于PCA-MIE的过程模式故障检测方法几乎在所有维数子集上性能都优于其他两种方法,在特征维数为18维时获得最高的准确率94.6%,证明了方法的优越性。
针对传统近红外光谱波长选择方法忽略模型中非线性因素的缺陷,采用具有非线性处理能力的最小二乘支持向量机,结合间隔策略的波长选择方法和联合区间的思想,提出了一种非线性模型下的波长筛选算法—联合区间最小二乘支持向量机(synergy interval least squares support vector machines,siLSSVM)。以苹果糖度近红外光谱数据为例,与传统siPLS波长筛选方法相比,新算法的预测集均方根误差(RMSEP)在PLS模型和LSSVM模型预测时分别提高了37.43%和47.88%,预测集相关系数(RP)在PLS模型和LSSVM模型预测时分别增加了6.04%和7.31%。实例表明,对于存在非线性因素较强的光谱数据,siLSSVM算法能够有效的挑选最优波长区间与提高模型的预测精度和鲁棒性,为近红外光谱在非线性因素下筛选波长提供了新前景。
暂无评论