改进索引术语质量的衡量方法可以有效提高IR系统的检索效率,但术语的固有属性易受文档长度影响,难以全面衡量术语质量。对此,本文从术语内在的区分性出发,借鉴词袋模型的基本思想,提出了术语区分能力(term discriminative capacity,TDC)这一理论及3种不同的计算方法。本文还采集了Web of Science的3个子数据库中包含4个著录项的900条记录作为实验数据,来实现TDC的大规模计算,并观察3种算法在实践中的差异。经过实验分析得出,计算术语区分能力的最佳方法为TDC-T,该算法在多个方面表现稳定,且不受DF值的影响,可以作为衡量术语质量的全新指标,记为TDC。但是本研究所选取的A&HCI数据库的记录较少,这或许会造成另两个领域计算结果的失衡。
电子病历实体识别是医疗领域人工智能和医疗信息服务中非常关键的基础任务.为了更充分地挖掘电子病历中的实体语义知识以提升中文医疗实体识别效果,提出融入外部语义特征的中文电子病历实体识别模型.该模型首先利用语言模型word2vec将大规模的未标记文本生成具有语义特征的字符级向量,接着通过医疗语义资源的整合以及实体边界特征分析构建了医疗实体及特征库,将其与字符级向量相拼接以更好地挖掘序列信息,最后采用改进的Voting算法将深度学习结果与条件随机场(Conditional Random Fields,CRF)的结果加以整合来纠正标签偏置.实验表明,融入外部语义特征的改进模型的F值达到94.06%,较CRF高出1.55%.此外,还给出了模型最佳效果的各项参数.
暂无评论