为更好地利用单词词性包含的语义信息和伴随单词出现时的非自然语言上下文信息,提出动态调整语义的词性加权多模态情感分析(part of speech weighted multi-modal sentiment analysis model with dynamic semantics adjustment,PW-DS)模...
详细信息
为更好地利用单词词性包含的语义信息和伴随单词出现时的非自然语言上下文信息,提出动态调整语义的词性加权多模态情感分析(part of speech weighted multi-modal sentiment analysis model with dynamic semantics adjustment,PW-DS)模型.该模型以自然语言为主体,分别使用基于Transformer的双向编码器表示(bidirectional encoder representation from Transformers,BERT)模型、广义自回归预训练(generalized autoregressive pretraining for language understanding,XLNet)模型和一种鲁棒优化的BERT预训练(robustly optimized BERT pretraining approach,RoBERTa)模型为文本模态做词嵌入编码;创建动态调整语义模块将自然语言和非自然语言信息有效结合;设计词性加权模块,提取单词词性并赋权以优化情感判别.与张量融合网络和低秩多模态融合等当前先进模型的对比实验结果表明,PW-DS模型在公共数据集CMU-MOSI和CMU-MOSEI上的平均绝对误差分别达到了0.607和0.510,二分类准确率分别为89.02%和86.93%,优于对比模型.通过消融实验分析了不同模块对模型效果的影响,验证了模型的有效性.
针对人体姿态估计中遮挡带来的缺乏图像低级特征指导和预测姿势与人体生理结构的不一致性问题,提出了一种新颖的生成式人体姿态估计方法(Generative Human Pose Estimation,GenPose)。该模型使用多尺度信息融合和条件生成模块解决...
详细信息
针对人体姿态估计中遮挡带来的缺乏图像低级特征指导和预测姿势与人体生理结构的不一致性问题,提出了一种新颖的生成式人体姿态估计方法(Generative Human Pose Estimation,GenPose)。该模型使用多尺度信息融合和条件生成模块解决了严重遮挡问题。多尺度模块从尺度和通道上细粒度融合图像特征,能捕捉到更多肢体细节,从而推理出遮挡关键点的特征信息。条件生成模块通过建模遮挡场景与姿态间的对应关系,根据标记编码器特征动态调整生成姿态,在保证可见点准确率的同时,在一定程度上减少了遮挡对非遮挡的干扰,提升了对遮挡姿态的生成效果。在公开的COCO和MPII数据集上,同以往方法相比,有了更好的结果,同时在CrowdPose、OCHuman以及SyncOCC数据集上验证了泛化能力。该模型在一定程度上能够解决严重遮挡下的姿态估计问题,提高了预测姿态的合理性,取得了更加优异的效果。
为了使“区间”形式加以表述的不确定信息的提取具有侧重性,需提取出对象(属性)集对应的属性(对象)区间集。本文在模糊形式背景中,通过引入2个阈值,将单边区间集与经典半概念结合,提取出属性(对象)集对应的对象(属性)区间集,从而提出区间集外延–集合内涵(集合外延–区间集内涵)(interval set extent-set intent(set extent-interval set intent),ISE-SI(SE-ISI))型单边区间集模糊半概念。全体ISE-SI(SE-ISI)型单边区间集模糊半概念构成格,并给出基于格搜寻全体ISE-SI(SE-ISI)型单边区间集模糊半概念的算法。通过与已有成果对比,显示出这2种知识表示形式的多方优势。本文所得结果在知识表示及提取方法上具有适用范围广、实际应用强等优点。
暂无评论