为充分利用浅层特征中的细节纹理信息对人种特性的描述能力,挖掘具有区分性部位的表达特征对人种分类的作用,更好利用数据不同层次的特征与区分性部位以提供更具鲁棒性的人种信息,提出一种基于加权特征融合与局部特征注意的人种分类模型(weighted feature fusion and local feature attention model,WFLA)。模型设计加权特征融合模块增强浅层与深层特征的交互,构建局部特征注意模块重点关注区分性部位。在3个公开数据集中的大规模验证实验验证了WFLA模型在人种分类任务中具有明显优势。
针对室内移动机器人自定位算法定位精度不高、定位误差存在波动的问题,提出了一种RTFL(RFID tag floor based localization)定位算法与RSSI定位算法相结合的室内移动机器人自定位方法。由RTFL定位算法给定机器人位置估算初值和机器人所...
详细信息
针对室内移动机器人自定位算法定位精度不高、定位误差存在波动的问题,提出了一种RTFL(RFID tag floor based localization)定位算法与RSSI定位算法相结合的室内移动机器人自定位方法。由RTFL定位算法给定机器人位置估算初值和机器人所在的范围,通过基于RSSI的机器人自定位系统进行机器人位置的进一步精确定位。求解过程中,通过遗传算法求解极大似然方程组,并提出染色体的筛选和剔除策略。仿真实验结果表明,该方法在有效的时间内完成定位,平均定位误差为0.157 2 m,与传统的改进方法 0.332 14 m的定位误差相比,降低了近一倍。并且新方法受环境影响较小,鲁棒性较好,能够很好地满足室内移动机器人的定位要求。
暂无评论