传统的基于表示学习的知识推理方法只能用于封闭世界的知识推理,有效进行开放世界的知识推理是目前的热点问题。因此,提出一种基于路径和增强三元组文本的开放世界知识推理模型PEOR(Path and Enhanced triplet text for Open world know...
详细信息
传统的基于表示学习的知识推理方法只能用于封闭世界的知识推理,有效进行开放世界的知识推理是目前的热点问题。因此,提出一种基于路径和增强三元组文本的开放世界知识推理模型PEOR(Path and Enhanced triplet text for Open world knowledge Reasoning)。首先,使用由实体对间结构生成的多条路径和单个实体周围结构生成的增强三元组,其中路径文本通过拼接路径中的三元组文本得到,而增强三元组文本通过拼接头实体邻域文本、关系文本和尾实体邻域文本得到;其次,使用BERT(Bidirectional Encoder Representations from Transformers)分别编码路径文本和增强三元组文本;最后,使用路径向量和三元组向量计算语义匹配注意力,再使用语义匹配注意力聚合多条路径的语义信息。在3个开放世界知识图谱数据集WN18RR、FB15k-237和NELL-995上的对比实验结果表明,与次优模型BERTRL(BERT-based Relational Learning)相比,所提模型的命中率(Hits@10)指标分别提升了2.6、2.3和8.5个百分点,验证了所提模型的有效性。
随着超像素算法的发展, SLIC (Simple linear iterative clustering)由于时间复杂度低及良好的分割结果而被广泛关注.但是由于传统的SLIC算法并没有考虑到图像的纹理信息,故而对于纹理较复杂的图像分割效果略有不足. LBP (Local binary pattern)对于纹理的识别有着优秀的表现而且时间复杂度低,但是对于噪声的鲁棒性较差,并且会产生纹理偏移.因此,本文首先针对传统的LBP中存在的问题进行改进;然后将改进后的算法与SLIC结合,提出一种融合纹理信息的超像素算法—SLICT (Simple linear iterative clustering based on texture).为验证分割效果,本文选取纹理较多的医学图像进行实验,采用心脏MRI数据库进行验证并与其他超像素算法进行对比.实验表明, SLICT在边缘召回率、欠分割错误率以及覆盖率上的综合表现优于其他算法.从分割结果上来看, SLICT不但能够更好地贴合图像边缘,而且对于连续区域的分割效果也较好,更适合纹理较复杂的图像.
暂无评论