针对现有的时序知识图谱补全模型高度依赖历史上已经发生过的事件,对历史上未发生过的事件预测不够准确的问题,提出了一种加入时序信息的对比历史与非历史信息的时序知识图谱补全模型(completion of temporal knowledge graph for compa...
详细信息
针对现有的时序知识图谱补全模型高度依赖历史上已经发生过的事件,对历史上未发生过的事件预测不够准确的问题,提出了一种加入时序信息的对比历史与非历史信息的时序知识图谱补全模型(completion of temporal knowledge graph for comparing historical and non-historical information,CHNH)。该模型通过BiLSTM捕捉序列中的长期依赖关系,确保准确地编码历史信息。使用RGCN进行图卷积操作,从而学习到全局的图表示。在预测过程中,针对分开编码的历史和非历史信息,采用不同的评分函数来确定预测实体对这两类信息的依赖程度。通过这种方式,模型能够更有效地补全实体和关系,提高模型的预测性能。在ICEWS18、GDELT和YAGO数据集上的实验结果表明,CHNH模型在MRR、Hits@1、Hits@3和Hits@10上普遍优于基线模型。
针对病人肺结节大小各异、结节征象复杂造成的结节检测困难问题,基于迁移学习提出一种多尺度和特征融合的肺癌识别方法,根据CT图像预测病人未来一年内患肺癌的概率。根据肺结节和肺肿块大小,采用3种不同尺度的图像块输入三维结节检测网络,避免小尺度输入的结节检测网络难以获取大区域病灶整体特征的问题;在多尺度输入基础上采用特征融合策略,将网络提取的瓶颈层特征和输出层特征融合,充分描述病灶的详细特征。在Kaggle Data Science Bowl 2017数据集上的实验结果表明,所提方法降低了肺癌预测的损失值,提高了肺癌识别精度。
暂无评论