知识推理是补全知识图谱的重要方法,旨在根据图谱中已有的知识,推断出未知的事实或关系.针对多数推理方法仍存在没有充分考虑实体对之间的路径信息,且推理效率偏低、可解释性差的问题,提出了将TuckER嵌入和强化学习相结合的知识推理方法TuckRL(TuckER embedding with reinforcement learning).首先,通过TuckER嵌入将实体和关系映射到低维向量空间,在知识图谱环境中采用策略引导的强化学习算法对路径推理过程进行建模,然后在路径游走进行动作选择时引入动作修剪机制减少无效动作的干扰,并将LSTM作为记忆组件保存智能体历史动作轨迹,促使智能体更准确地选择有效动作,通过与知识图谱的交互完成知识推理.在3个主流大规模数据集上进行了实验,结果表明TuckRL优于现有的大多数推理方法,说明将嵌入和强化学习相结合的方法用于知识推理的有效性.
对比模式挖掘是序列模式挖掘的一个重要分支,带有密度约束的对比模式有助于生物学家发现生物序列中的特殊因子的分布情况。为此,文中提出了MPDG(Mining distinguishing sequence Patterns based on Density and Gap constraint)算法,该...
详细信息
对比模式挖掘是序列模式挖掘的一个重要分支,带有密度约束的对比模式有助于生物学家发现生物序列中的特殊因子的分布情况。为此,文中提出了MPDG(Mining distinguishing sequence Patterns based on Density and Gap constraint)算法,该算法应用网树结构挖掘满足密度约束和间隙约束的对比模式,在仅需扫描一遍序列库的情况下,该算法可计算当前模式的所有超模式的支持度,从而提高挖掘效率。最后,在真实蛋白质数据集上进行实验,实验结果验证了MPDG算法的有效性。
暂无评论