针对人体姿态估计中遮挡带来的缺乏图像低级特征指导和预测姿势与人体生理结构的不一致性问题,提出了一种新颖的生成式人体姿态估计方法(Generative Human Pose Estimation,GenPose)。该模型使用多尺度信息融合和条件生成模块解决...
详细信息
针对人体姿态估计中遮挡带来的缺乏图像低级特征指导和预测姿势与人体生理结构的不一致性问题,提出了一种新颖的生成式人体姿态估计方法(Generative Human Pose Estimation,GenPose)。该模型使用多尺度信息融合和条件生成模块解决了严重遮挡问题。多尺度模块从尺度和通道上细粒度融合图像特征,能捕捉到更多肢体细节,从而推理出遮挡关键点的特征信息。条件生成模块通过建模遮挡场景与姿态间的对应关系,根据标记编码器特征动态调整生成姿态,在保证可见点准确率的同时,在一定程度上减少了遮挡对非遮挡的干扰,提升了对遮挡姿态的生成效果。在公开的COCO和MPII数据集上,同以往方法相比,有了更好的结果,同时在CrowdPose、OCHuman以及SyncOCC数据集上验证了泛化能力。该模型在一定程度上能够解决严重遮挡下的姿态估计问题,提高了预测姿态的合理性,取得了更加优异的效果。
暂无评论