针对蝴蝶优化(monarch butterfly optimization,MBO)算法易陷入局部最优和收敛速度慢等问题,提出了一种基于改进的交叉迁移和共享调整的蝴蝶优化(MBO with cross migration and sharing adjustment,CSMBO)算法。首先,利用基于维度的垂...
详细信息
针对蝴蝶优化(monarch butterfly optimization,MBO)算法易陷入局部最优和收敛速度慢等问题,提出了一种基于改进的交叉迁移和共享调整的蝴蝶优化(MBO with cross migration and sharing adjustment,CSMBO)算法。首先,利用基于维度的垂直交叉操作来替换标准MBO算法的迁移算子,形成交叉迁移算子,有效提升其搜索能力;其次,将原始调整算子改为具有信息分享功能的共享调整算子,以加快算法的收敛速度;最后,采用贪婪选择策略取代标准MBO算法中的精英保留策略,减少一次排序操作进而提高其计算效率。为了验证CSMBO算法的优化能力,在30维和50维函数上进行优化实验,并与三种优化算法进行比较,其实验结果表明CSMBO算法具有良好的优化性能。
灰狼优化算法(Grey Wolf Optimizer,GWO)和人工蜂群算法(Artificial Bee Colony,ABC)是两种流行且高效的群智能优化算法. GWO具有局部搜索能力强等优势,但存在全局搜索能力弱等缺陷;而ABC具有全局搜索能力强等优点,但存在收敛速度慢等不...
详细信息
灰狼优化算法(Grey Wolf Optimizer,GWO)和人工蜂群算法(Artificial Bee Colony,ABC)是两种流行且高效的群智能优化算法. GWO具有局部搜索能力强等优势,但存在全局搜索能力弱等缺陷;而ABC具有全局搜索能力强等优点,但存在收敛速度慢等不足.为实现二者优势互补,提出了一种GWO与ABC的混合算法(Hybrid GWO with ABC,HGWOA).首先,使用静态贪心算法替代ABC雇佣蜂阶段中的动态贪心算法来强化探索能力,同时为弥补其收敛速度降低的不足,提出一种新型的搜索蜜源方式;然后,去掉影响收敛速度的侦查蜂阶段,在雇佣蜂阶段再添加反向学习策略,以避免搜索陷入局部最优;最后,为了平衡以上雇佣蜂阶段的探索能力,在观察蜂阶段,自适应融合GWO,以便增强开采能力和提高优化效率.大量的函数优化和聚类优化的实验结果表明,与state-of-the-art方法相比,HGWOA具有更好的优化性能及更强的普适性,且能更好地解决聚类优化问题.
暂无评论