针对谱聚类在尺度参数计算时需要人为设置近邻参数及聚类结果不稳定等问题,本文将初始类中心值和尺度参数作为决策变量,重点对谱聚类算法进行自适应优化与改进。首先,将样本邻域标准差的倒数作为度量样本局部密度的参数,与密度峰值思想相结合,设计了一种基于密度峰值的初始类中心决策值选择方法(initial class center decision value algorithm based on density peak,DP_KD),解决密度调整谱聚类中聚类结果不稳定的问题。其次,利用样本间的平均距离计算相应的邻域半径,并根据样本标准差自适应地求解每个样本的尺度参数,构造样本间的相似度矩阵,实现了近邻参数的自适应设置,解决尺度参数需要人为设置的问题。然后,基于优化后的初始类中心决策值和近邻参数方法,进一步调整高斯核函数,提出一种基于邻域标准差的密度调整谱聚类算法(density adjusted spectral clustering algorithm based on neighborhood standard deviation,DSSD),通过构建特征向量空间实现了密度谱聚类。最后,将提出的算法与其他聚类算法在多个数据集上进行了对比。结果表明,与其他谱聚类算法相比,本文提出的DSSD算法不仅具有更好的聚类效果,且聚类结果更加稳定,尤其是在类内密集且类间边缘明确的DIM512数据集中,DSSD算法可以正确地进行聚类分簇;在准确率、兰德系数和F-measure上较其他算法至少提升了0.0268、0.0136和0.0247,这表明DSSD算法不仅聚类效果较好且更适合大规模数据集的聚类分析。
现有5G(5th GenerationMobile Communication Technology)核心网异常检测主要基于信令流量深度解析,但较少利用核心网网络功能交互关系的作用。针对上述问题,提出一种基于交互的5G核心网网络功能异常检测模型。首先,该模型以行为分析为...
详细信息
现有5G(5th GenerationMobile Communication Technology)核心网异常检测主要基于信令流量深度解析,但较少利用核心网网络功能交互关系的作用。针对上述问题,提出一种基于交互的5G核心网网络功能异常检测模型。首先,该模型以行为分析为驱动,基于信令流量和网络功能注册数据提取多维属性,通过行为画像来表征网络功能行为模式,并采用集成学习算法RFECV(Recursive Feature Elimination with Cross-Validation)进行属性特征选择,降低特征维度的同时筛选出与区分网络功能行为模式高度相关的属性特征。然后,模型基于网络功能交互关系对核心网进行图建模,建模后的图数据融合了网络功能属性信息和交互信息。最后,模型通过基于空间域的图卷积网络聚合邻域节点属性信息和结构信息来融合行为模式特征,新生成的节点表示用于分类,从而将核心网网络功能异常检测问题转化为图节点分类问题。通过在free5GC仿真平台上采集数据,并在搭建的异常检测系统中的实验表明,该模型的异常检测性能优于基于属性特征分析的传统机器学习模型、基于结构特征分析的图嵌入模型及部分5G核心网异常检测模型。10%数据集作为训练集时,所提模型的准确率比支持向量机模型提高6.6%,比Struc2vec模型提高13%,比深度神经网络模型提高8%。
暂无评论