2010年12月至2011年11月,利用涡度相关技术研究了我国亚热带(浙江)毛竹林生态系统的CO2通量,分析了毛竹林净生态系统交换量(NEE)、生态系统呼吸量(RE)和生态系统总交换量(GEE)的变化.结果表明:研究期间,毛竹林各月的NEE均为负值,7月最大,为-99.33 g C·m-2,11月最小,仅-23.49 g C·m-2,其变化曲线呈双峰型.各月CO2通量平均日变化差异明显,9月最大,为-0.60 g CO2·m-2·s-1,1月最小,为-0.30 g CO2·m-2·s-1,且在NEE正负转换的时间点上呈明显的季节变化特征;全年RE呈单峰型变化,夏季最高、冬季最低,夜间RE与土壤温度呈极显著正相关.全年NEE、RE和GEE分别为-668.40、932.55和-1600.95 g C·m-2·a-1,NEE占GEE的41.8%.与其他生态系统相比,毛竹林的固碳能力极强.
物种丰富的异龄老龄森林对陆地生态系统动态模型及全球碳收支具有十分重要的意义.目前,我国关于老龄森林碳通量的研究很少,亚热带地区的老龄林更鲜有报道.本研究利用涡度相关技术观测了我国中亚热带地区的浙江天目山一个老龄常绿落叶阔叶混交林生态系统的CO_2通量.以2013年7月到2014年6月的观测数据为依据,分析了此老龄林净生态系统碳交换量(NEE)、生态系统呼吸量(R_e)、生态系统总交换量(GEE)的变化.结果表明:研究期间老龄林常绿落叶阔叶混交林生态系统NEE月总量除12、2月为正值外(表现为碳源),其余月份均为负值(表现为碳汇).NEE月总量平均为-61.52 g C·m^(-2),各月碳吸收量以6月(-149.40 g C·m^(-2))最高,10月次之,呈双峰变化;最大碳源出现在2月(23.45g C·m^(-2)).各月NEE平均日变化差异明显,6月的平均通量峰值最大,达到-0.98 mg·m^(-2)·s^(-1),12月最小,为-0.35mg·m^(-2)·s^(-1);NEE符号改变的时间也呈明显的季节变化特征;全年NEE、R_e、GEE分别为-738.18、931.05、-1669.23g C·m^(-2).与相近纬度相近林型的其他森林生态系统相比,由于其复层结构和多种幼龄更新树木的存在,其测定的固碳量较大.表明我国中亚热带天目山地区的老龄森林生态系统不是处于碳收支稳定状态,而是具有相对较高的固碳能力.
以浙江省安吉县毛竹(Phyllostachys edulis)林生态系统为研究对象,利用涡度相关技术进行观测,获取2011年毛竹林的水汽通量数据,同时结合常规气象观测数据,分析了水汽通量全年变化。结果表明:毛竹林全年水汽通量基本为正值,月尺度上,水汽通量呈单峰型变化趋势,且各月的最大值均在12:00—14:00出现,呈现一定规律性,7月(0.1116 g m-2s-1)最高,12月(0.0209 g m-2s-1)最低;季节尺度上,夏季最高(0.0873 g m-2s-1),呈现典型单峰型变化趋势,春秋季(均为0.0541 g m-2s-1)次之,变化特征与夏季相似,冬季最低(0.0221 g m-2s-1),曲线变化复杂,波动较大。毛竹林全年蒸散量占全年降水量48.26%。2、4、5、11、12月蒸散量略大于降水量,其余月份蒸散量均小于降水量,6月份降水量与蒸散量差别最大。季节尺度上,对毛竹林水汽通量与净辐射进行回归关系分析,夏季最大,R2为0.6111,秋季为0.5295,春季为0.2605,冬季最小0.0455。通过F检验,水汽通量与净辐射有极显著线性关系。在植物生长期,毛竹林水汽通量随饱和水汽压差的增大而增大,植物发育成熟后,当饱和水汽压差增大到一定程度时,其增大反而抑制了水分的蒸散。
亚热带植被具有强大的固碳潜力,然而由气候变化导致的极端天气,特别是日益增多的极端降水事件,对其碳循环产生了巨大的影响。本研究基于1 km栅格气象数据计算了持续干期(CDD)、持续湿期(CWD)、日最大降水量(Rx1day)、连续5日最大降水量(Rx5day)、强降水量(R95p)和年总降水量(PRCPTOT)6个极端降水指数,分析了1970—2019年极端降水时空演变特征和亚热带植被净初级生产力(NPP)的时空格局,并探讨极端降水对植被NPP的影响。结果表明:除CWD外,其他指数均呈增加趋势,呈现降雨极端异常值增多、干旱化不显著的趋势;空间分布上越靠近西北方向越干旱,越往东南方向越湿润,空间变异特征显著;中国亚热带植被NPP以5.8 g C·m^(-2)·10 a^(-1)的速率增加;年均NPP空间分布上由东南向西北递减,空间变异整体较小;植被NPP与极端降水量指数、CWD之间以正相关为主,与CDD以负相关为主;植被NPP对CWD的变化最敏感,对CDD敏感性的空间变异最大,并且持续干期越长、极端降水量越多的地方,NPP对极端降水的敏感性越高,而持续湿期越长的地方,NPP对其敏感性越低。研究结果将为评估亚热带地区极端天气及其对植被NPP的影响提供理论支持,为理解亚热带植被响应气候变化提供重要数据支持。
暂无评论