目的利用机器学习算法构建新型冠状病毒肺炎(COVID-19)患者临床结局的预测模型,并探索结局相关因子。方法收集2020年2月5日至4月15日武汉市火神山医院及华中科技大学同济医学院附属同济医院光谷院区收治的COVID-19患者的临床指标与结局(院内死亡和院内接受气管插管治疗),利用人工神经网络(ANN)、朴素贝叶斯、logistic回归、随机森林4种机器学习算法构建患者临床结局的预测模型。结果共纳入4 804例COVID-19患者,其中发生院内死亡100例(2.08%)、接受气管插管治疗87例(1.81%)。与院内死亡相关性最强的变量为白细胞计数、白蛋白、钙离子、血尿素氮、心肌型肌酸激酶同工酶和年龄,与院内接受气管插管治疗相关性最强的变量为白细胞计数、淋巴细胞绝对值、超敏CRP、总胆红素、钙离子和年龄,分别利用以上变量、基于4种机器学习算法构建院内死亡和院内接受气管插管治疗预测模型。4种预测模型中,相较于基于ANN、logistic回归、随机森林算法构建的模型[预测院内死亡的AUC值(95% CI)分别为0.938(0.882~0.993)、0.926(0.865~0.987)、0.867(0.780~0.954),预测院内接受气管插管治疗的AUC值(95% CI)分别为0.932(0.814~0.980)、0.935(0.817~0.981)、0.936(0.921~0.972)],基于朴素贝叶斯算法构建的模型在预测COVID-19患者院内死亡(AUC=0.952,95% CI 0.925~0.979)和接受气管插管治疗(AUC=0.948,95% CI 0.896~0.965)方面性能均最佳。结论 4种机器学习算法在预测COVID-19患者临床结局方面性能良好,其中以基于朴素贝叶斯算法构建的预测模型最佳。白细胞计数、白蛋白、钙离子、血尿素氮、心肌型肌酸激酶同工酶和年龄可以用来预测COVID-19患者院内死亡,白细胞计数、淋巴细胞绝对值、超敏CRP、总胆红素、钙离子和年龄可以用来预测患者院内是否接受气管插管治疗。
目的分析D-二聚体水平与急性主动脉夹层(acute aortic dissection,AAD)住院死亡率的关系。方法系统性检索PubMed、Embase、Web of Science、维普、中国知网及中国学术期刊数据库等数据库关于D-二聚体水平与AAD住院死亡率的文献,搜索时...
详细信息
目的分析D-二聚体水平与急性主动脉夹层(acute aortic dissection,AAD)住院死亡率的关系。方法系统性检索PubMed、Embase、Web of Science、维普、中国知网及中国学术期刊数据库等数据库关于D-二聚体水平与AAD住院死亡率的文献,搜索时间截止至2023年1月1日,行Meta分析D-二聚体水平与AAD住院死亡率的关系。结果共纳入18项研究4904例患者。Meta分析发现,D-二聚体与AAD住院死亡率存在相关性(OR=1.35,95%CI=1.19~1.53)。亚组分析中,D-二聚体截断值≥5.0μg/ml(OR=2.15,95%CI=1.57~2.95)、D-二聚体截断值<5.0μg/ml(OR=1.19,95%CI=0.97~1.45)和D-二聚体作为连续值(OR=1.12,95%CI=1.09~1.16)均与AAD住院死亡率有显著相关性;AAD患者中A型夹层比例>50%(OR=1.36,95%CI=1.18~1.57)和比例≤50%(OR=1.36,95%CI=1.18~1.57)亦均有显著的相关性。结论D-二聚体是AAD患者住院死亡率的显著且独立的预测因子。
暂无评论