为解决现有VSLAM特征提取器在室内环境中对纹理和光照变化敏感、特征点冗余导致的局部依赖性过强以及硬件资源受限时的存储开销问题,提出了一种面向纹理的均匀FAST特征提取器(texture-oriented and homogenized FAST feature extractor,...
详细信息
为解决现有VSLAM特征提取器在室内环境中对纹理和光照变化敏感、特征点冗余导致的局部依赖性过强以及硬件资源受限时的存储开销问题,提出了一种面向纹理的均匀FAST特征提取器(texture-oriented and homogenized FAST feature extractor, TOHF)。结合HVS(human visual system),采用二阶段阈值策略来更敏感地应对纹理的清晰度和复杂度差异。根据特征点密度的变化来动态调整特征点的分布,在兼顾计算效率和存储开销的同时,保证特征点分布结构信息。在资源受限设备录制的数据集和官方Eu Roc数据集上基于ORB-SLAM3框架开展实验,采用匹配率、重投影误差、绝对轨迹误差(ATE)和耗时作为评估指标。实验结果表明:TOHF在视觉加惯导模式下带来更高精度和鲁棒性的同时,仍满足实时性要求。
暂无评论