为提高管道环焊缝超声衍射时差法(time of flight diffraction,TOFD)扫描图谱在背景信号干扰、样本量不均衡等情况下的缺陷识别效果,提出了一种改进的YOLOv5s网络模型.针对管道环焊缝TOFD图谱中缺陷形态不规则的特点,通过引入可变形卷积...
详细信息
为提高管道环焊缝超声衍射时差法(time of flight diffraction,TOFD)扫描图谱在背景信号干扰、样本量不均衡等情况下的缺陷识别效果,提出了一种改进的YOLOv5s网络模型.针对管道环焊缝TOFD图谱中缺陷形态不规则的特点,通过引入可变形卷积,使得网络自适应缺陷自身的形状特点,提高TOFD图谱中不规则缺陷的特征提取能力;针对TOFD扫描图谱中直通波和底面波等干扰波形对缺陷识别的影响,通过在网络不同深度分别添加自注意力机制,引导网络关注缺陷细微特征的同时抑制界面波对缺陷识别的影响;针对实际样本中各类缺陷不均衡的情况,采用SlideLoss损失函数代替原损失函数,提高网络对样本量较少的裂纹类缺陷的识别精度.对比试验结果表明,改进后的网络能够抑制TOFD图谱复杂背景干扰,提高样本不均衡条件下的识别率.相比原网络,整体平均识别率均值(mean Average Precision,mAP)和裂纹类缺陷的平均识别率(Average Precision,AP)分别提高了8.2%和7.3%.
暂无评论