为了更好地限制操作过电压,以淮南—皖南1 000 k V特高压工程为例,对两端装设避雷器、合闸电阻与两端避雷器配合、沿线布置1台避雷器以及沿线布置多台避雷器等方式进行了电磁暂态计算,通过比较普通避雷器、高荷电率避雷器和低残压避雷...
详细信息
为了更好地限制操作过电压,以淮南—皖南1 000 k V特高压工程为例,对两端装设避雷器、合闸电阻与两端避雷器配合、沿线布置1台避雷器以及沿线布置多台避雷器等方式进行了电磁暂态计算,通过比较普通避雷器、高荷电率避雷器和低残压避雷器的应用效果,提出了深度限制操作过电压对避雷器在残压、荷电率、工频过电压耐受能力和能量吸收能力等方面的相应技术要求,当使用1.4倍额定电压的低残压避雷器时,可将系统操作过电压降低到1.3;.4倍额定电压的水平;如能使用1.3倍额定电压的低残压避雷器,并沿线配置3台时,可将系统操作过电压降低到1.2;.3倍额定电压,实现深度抑制操作过电压的目的。
电力电子器件的串并联是目前解决和实现高压、大功率直流断路器、电力电子变换器的主要组合方式。为此,围绕适用于高压直流开断的电力电子器件串并联技术,开展了面向瞬态开断的多器件静态及动态均压技术研究。首先,分析了集成门极换流晶闸管(integrated gate-commutated thyristor,IGCT)串联不均压原因及IGCT串联均压技术,以给出适用于直流开断的IGCT串联均压方案;其次,分析了缓冲电容、缓冲电阻和关断触发时间的差异对均压特性的影响;最后,搭建4个IGCT串联的电力电子阀组并进行实验验证。研究结果表明:(1)适用于直流开断的IGCT串联静态均压可通过并联静态均压电阻实现,负载侧动态均压可通过并联缓冲阻容电路的无源缓冲方法实现;(2)缓冲电容越大、缓冲电阻越小,过电压就越小;触发信号时间差越大,不均压程度就越大;(3)10.5 k V/1.5 k A阀组开断实验不均压系数为5.71%,均压效果良好;(4)基于模块化电力电子串联阀组,进行了混合式直流断路器整体联调实验,3.0 ms时间后关断短路电流为3.6 k A,关断产生过电压为21 k V。通过实验验证了适用于高压直流开断的IGCT串联阀组均压方案的可行性,可以为实现瞬态开断的模块化电力电子串联阀组工程应用提供技术基础。
暂无评论