低功耗是现代处理器设计的重要目标之一,为了降低功耗,现代处理器广泛应用了动态电压频率调节(dynamic voltage and frequency scaling,DVFS)技术.本文聚焦DVFS技术的安全性开展研究工作,发现主流处理器的DVFS单元在电压和频率管理方面...
详细信息
低功耗是现代处理器设计的重要目标之一,为了降低功耗,现代处理器广泛应用了动态电压频率调节(dynamic voltage and frequency scaling,DVFS)技术.本文聚焦DVFS技术的安全性开展研究工作,发现主流处理器的DVFS单元在电压和频率管理方面存在安全缺陷,由此造成3个硬件漏洞:通用处理器的低电压故障注入漏洞、图形处理器(graphics processing unit,GPU)的低电压故障注入漏洞和通用处理器的频率隐藏通道漏洞.基于此,提出软件控制的低电压故障注入攻击和频率隐藏通道攻击两种新的攻击方法,整个攻击过程完全使用软件实现但是不利用任何软件漏洞.通过4个攻击实例验证了所提出的方法的有效性,实现了攻破主流可信执行环境ARM TrustZone和Intel软件防护扩展(software guard extensions,SGX)、使GPU上的人工智能模型失效以及构建数据秘密传送通道等目标.本文分别从硬件和软件两个角度提出防御措施,可助力处理器设计人员设计新一代安全低功耗技术.
随着感知技术的不断发展以及智能交通基础设施的完善,智能网联汽车应用在自动驾驶领域的地位逐渐提升.自动驾驶感知从单车智能向车路协同迈进,近年来涌现出一批新的协同感知技术与方法.本文旨在全面阐述面向智能网联汽车的车路协同感知技术,并总结相关可利用数据及该方向的发展趋势.首先对智能网联汽车的协同感知策略进行划分,并总结了不同感知策略具备的优势与不足;其次,对智能网联汽车协同感知的关键技术进行阐述,包括车路协同感知过程中的感知技术与通信技术;然后对车路协同感知方法进行归纳,总结了近年来解决协同感知中感知融合(Perception fusion,PF)、感知信息选择与压缩(Perception selection and compression,SC)等问题的相关研究;最后对车路协同感知的大规模数据集进行整理,并对智能网联汽车协同感知的发展趋势进行分析.
暂无评论