随着工业经济的不断发展,环境问题也日益凸显。而新兴污染物的涌现,使得环境监测工作变得更为紧迫和复杂。在这一背景下的环境监测课程教学要以学生为主体,以国家对科技人才和技术的需求为导向,以国务院发布的《新污染物治理行动方案》为具体指导,注重多学科与信息技术的深度融合,保持环境监测课程与时代需求和科技进步的同步,以更好地培养适应新时代新污染物治理需求的综合人才。With the continuous development of the industrial economy, environmental issues have become increasingly prominent. The emergence of emerging pollutants has made environmental monitoring more urgent and complex. In this context, the teaching of environmental monitoring courses should focus on students, be guided by the country's demand for scientific and technological talents, and follow the specific guidelines outlined in the State Council’s “New Pollutant Control Action Plan”. The course should emphasize the deep integration of multiple disciplines and information technology, ensuring that the environmental monitoring curriculum keeps pace with the demands of the times and technological progress, in order to better cultivate well-rounded talent capable of meeting the needs of new pollutant governance in the new era.
在全球气候变化背景下,复合极端事件的频率和强度显著增加,对水资源、农业生产和生态系统构成了严重威胁,成为学术界的研究热点。本文基于CiteSpace软件,对2010至2023年间WOS数据库中939篇相关文献进行了文献计量分析,构建了知识图谱以梳理研究热点和发展趋势。结果显示,复合极端事件的研究主要集中在美国和中国,研究热点包括“高温干旱”和“降水热浪”等复合事件。研究过程可以划分为三个阶段:概念解析与驱动因素探索阶段(2010~2017年)、多学科交叉与模型构建阶段(2017~2020年)、以及应用转化阶段(2020~2023年),涵盖灾害风险管理和城市规划等实践领域。未来研究应进一步整合多学科方法,注意不同地区针对性研究,发展先进预测模型以提升对复合极端事件的预测精度和管理效率,从而为应对气候变化提供科学支持。Against the backdrop of global climate change, the frequency and intensity of compound extreme events have significantly increased, posing severe threats to water resources, agricultural production, and ecosystems, thus becoming a research focus in the academic community. This study utilizes CiteSpace software to conduct a bibliometric analysis of 939 relevant articles from the WOS database published between 2010 and 2023, constructing knowledge maps to outline research hotspots and developmental trends. The results indicate that research on compound extreme events is mainly concentrated in the United States and China, with research hotspots including compound events such as “heat-drought” and “precipitation-heatwave.” The research process can be divided into three phases: the conceptual exploration and driving factor analysis phase (2010~2017), the multidisciplinary integration and model construction phase (2017~2020), and the application phase (2020~2023), covering practical fields such as disaster risk management and urban planning. Future research should further integrate multidisciplinary approaches. Pay attention to region-specific studies and develop advanced predictive models to improve the prediction accuracy and management efficiency of compound extreme events, thereby providing scientific support for addressing climate change.
暂无评论