针对滚动轴承高维故障特征集识别精度低的问题,提出基于线性局部切空间排列(Linear Local Tangent Space Alignment,LLTSA)算法的维数约简故障诊断模型。首先结合小波包分解、时域、频域及时频域统计方法构造全面表征轴承不同故障特性...
详细信息
针对滚动轴承高维故障特征集识别精度低的问题,提出基于线性局部切空间排列(Linear Local Tangent Space Alignment,LLTSA)算法的维数约简故障诊断模型。首先结合小波包分解、时域、频域及时频域统计方法构造全面表征轴承不同故障特性的混合域特征集,通过敏感度的特征选取方法,从混合特征集中选取轴承故障的敏感特征集,再利用LLTSA算法将高维敏感特征集约简为故障区分度更好的低维特征矢量,并用模糊C均值(Fuzzy C-means,FCM)聚类算法进行故障模式识别,本研究方法能够突出不同特征对分类的贡献率,强化敏感特征,弱化不相关特征,提升了分类精度。最后用深沟球轴承不同部位故障诊断实例验证该模型的有效性。
针对工艺规划与调度集成(integration of process planning and scheduling,IPPS)问题求解复杂性,为提高求解效率,设计了包含探索种群、寻优种群和最优种群的多群体混合进化算法,通过运用混合遗传算法和基于聚类淘汰机制的差分进化算法...
详细信息
针对工艺规划与调度集成(integration of process planning and scheduling,IPPS)问题求解复杂性,为提高求解效率,设计了包含探索种群、寻优种群和最优种群的多群体混合进化算法,通过运用混合遗传算法和基于聚类淘汰机制的差分进化算法分别更新探索种群中工艺链和加工顺序链,保持可行解多样性和差异性;然后利用克隆领域搜索算法完成寻优种群中可行解的克隆和领域搜索,进一步提高种群质量;最后按照精英保留策略更新最优种群获得全局最优解。通过实例计算对比,结果显示算法搜索效率和求解质量均有明显改善,且稳定性较好,表明该算法求解IPPS问题的可行性及优越性。
暂无评论