针对滚动轴承故障诊断时所提取的特征值中可能含有较小相关性和冗余性特征,采用基于Wrapper模式的距离评价技术(distance evaluation technique,简称DET)进行特征选择。在分类器的设计中,提出了基于稳健回归的多变量预测模型(Robust regression-Variable predictive model based class discriminate,简称RRVPMCD)分类方法,以减小"异常值"对参数估计的影响,从而有望建立更加准确的预测模型。即根据Wrapper模式的特点,首先通过DET方法计算出各特征值对类的敏感度,并结合RRVPMCD分类器,选择敏感度最大的若干特征值组成特征向量矩阵;然后用RRVPMCD方法进行训练,建立预测模型;最后用所建立的预测模型进行模式识别。实验分析结果表明,基于Wrapper模式的特征选择方法和RRVPMCD分类方法相结合可以有效地对滚动轴承的工作状态和故障类型进行识别。
为了准确有效地提取滚动轴承振动信号的非平稳、非线性故障特征,将复杂网络与图信号处理技术(graph signal processing,GSP)引入机械故障诊断领域,提出了基于可视图图谱幅值熵(graph spectrum amplitude entropy of visibility graph,GS...
详细信息
为了准确有效地提取滚动轴承振动信号的非平稳、非线性故障特征,将复杂网络与图信号处理技术(graph signal processing,GSP)引入机械故障诊断领域,提出了基于可视图图谱幅值熵(graph spectrum amplitude entropy of visibility graph,GSAE VG)的滚动轴承故障诊断方法。该方法先将滚动轴承振动信号转换为可视图,获得可视图信号;再通过图傅里叶变换(graph Fourier transform,GFT)将可视图信号从顶点域变换到图谱域,并将计算得到的图谱幅值熵(graph spectrum amplitude entropy,GSAE)作为故障特征参数;利用马氏距离(Mahalanobis distance,MD)判别函数作为分类器对不同类型故障进行模式识别。实际滚动轴承振动信号的分析结果表明,基于可视图图谱幅值熵的故障诊断方法能对滚动轴承故障进行准确有效地识别。
暂无评论