实际交通环境规划最优路径的重要问题是无人车智能导航,而无人车全局路径规划研究主要在于模拟环境中算法求解速度的提升,考虑大部分仅路径距离最优或局限于当前道路的自身状况,本研究针对实际环境中的其他因素及其未来的变化和动态路网中无人车全局路径规划的复杂任务,基于预测后再规划的思想提出面向实际环境的无人车驾驶系统框架,并结合深度Q学习和深度预测网络技术提出一种快速全局路径规划方法(deep prediction network and deep Q network, DP-DQN),从而利用时空、天气等道路特征数据来预测未来交通状况、求解全局最优路径。基于公开数据集的试验和评价后发现,本研究提出的方法与Dijkstra、A*等算法相比,行车时间最高降低了17.97%。
业务过程管理(business process management,简称BPM)致力创新企业业务过程管理、分析、控制与改进的系统化与结构化方法,其目标在于改进产品质量、提升服务水平,是现代信息系统的共性基础技术.当今全球产业结构正呈现由"工业型经济...
详细信息
业务过程管理(business process management,简称BPM)致力创新企业业务过程管理、分析、控制与改进的系统化与结构化方法,其目标在于改进产品质量、提升服务水平,是现代信息系统的共性基础技术.当今全球产业结构正呈现由"工业型经济"向"服务型经济"加速转型.智能制造是实施《中国制造2025》的主攻方向之一,是落实工业化和信息化深度融合、打造制造强国的战略举措,更是我国制造业紧跟世界发展趋势.
暂无评论