现有序列推荐模型在绝对交互时间的利用上存在不足,导致用户偏好建模不准确。因此,提出了基于对比增强时间感知自注意力机制的序列推荐模型(sequential recommendation based on contrast enhanced timeaware self-attention mechanism,...
详细信息
现有序列推荐模型在绝对交互时间的利用上存在不足,导致用户偏好建模不准确。因此,提出了基于对比增强时间感知自注意力机制的序列推荐模型(sequential recommendation based on contrast enhanced timeaware self-attention mechanism,CTiSASRec)。首先,注意力权重的计算过程整合了评分数据、绝对交互时间、位置信息和项目流行度;其次,将项目的绝对交互时间和位置顺序融合,生成新的项目位置嵌入;最后,训练过程中利用对序列两次建模结果的对比学习来区分样本间的相似性和差异性,进而提高模型的准确性和鲁棒性。在6个不同领域和规模的数据集上进行的实验表明,CTiSASRec的表现优于目前最先进的顺序推荐模型。
暂无评论