针对现有的基于异构图神经网络的短文本分类方法未充分利用节点之间的有效信息,以及存在的过拟合问题,文中提出基于门控双层异构图注意力网络的半监督短文本分类方法(Semi-Supervised Short Text Classification with Gated Double-Laye...
详细信息
针对现有的基于异构图神经网络的短文本分类方法未充分利用节点之间的有效信息,以及存在的过拟合问题,文中提出基于门控双层异构图注意力网络的半监督短文本分类方法(Semi-Supervised Short Text Classification with Gated Double-Layer Heterogeneous Graph Attention Network,GDHG).GDHG包含节点注意力机制和门控异构图注意力网络两层.首先,使用节点注意力机制,训练不同类型的节点注意力系数,再将系数输入门控异构图注意力网络,训练得到门控双层注意力.然后,将门控双层注意力与节点的不同状态相乘,得到聚合的节点特征.最后,使用softmax函数对文本进行分类.GDHG利用节点注意力机制和门控异构图注意力网络的信息遗忘机制对节点信息进行聚集,得到有效的相邻节点信息,进而挖掘不同邻居节点的隐藏信息,提高聚合远程节点信息的能力.在Twitter、MR、Snippets、AGNews四个短文本数据集上的实验验证GDHG性能较优.
数据流聚类是机器学习与数据挖掘领域的重要研究内容之一,其目标是对持续到达的流式数据进行在线聚类分析,并通过检测聚类结果中的概念漂移,以描述动态变化的数据分布。但传统数据流聚类方法缺乏对高维数据的在线降维能力,导致其聚类性能受限。为解决此问题,提出了一种基于可扩展子空间学习的数据流聚类方法(Scalable Subspace Learning for Clustering Data Streams, S2LCStream)。首先,该方法通过可扩展子空间学习建立历史数据与新增数据之间的投影关系,将新增数据投影至历史数据张成的子空间中,以实时获取其聚类划分。其次,为保持不同时刻聚类划分的准确性,对持续到达的数据流进行数据分布的一致性检测,捕获其中存在的概念漂移,并结合回溯机制对聚类划分进行调整以适应动态变化的数据分布。最后,通过在多个真实数据集上进行测试,验证了本文所提方法在处理高维数据流的效能。具体而言,S2LCStream在保持较高聚类准确性的同时,在应对概念漂移时,处理时间明显优于EmCStream。
暂无评论