In this paper, non-oscillatory numerical schemes with high order of accuracy are presented for solving Hamilton-Jacobi equations on structured meshes; An adaptive local refinement method is developed for local regions...
详细信息
In this paper, non-oscillatory numerical schemes with high order of accuracy are presented for solving Hamilton-Jacobi equations on structured meshes; An adaptive local refinement method is developed for local regions where solutions of Hamilton-Jacobi equations varies sharply. Numerical results illustrate that the non-oscillatory schemes are stable and the adaptive local refinement method im- proves the accuracy of numerical solutions and the resolution for discontinuity.
VaR(Value at Risk)在商业或投资组合中作为对潜在损失的一种测量方法已越来越流行。在过去的十年中,国外一些政府和银行的有关规章制度中已要求用VaR来分析决定资本保证金需求。1995年J.P Morgam公司推出Risk Metrics系统使得VaR迅速...
详细信息
VaR(Value at Risk)在商业或投资组合中作为对潜在损失的一种测量方法已越来越流行。在过去的十年中,国外一些政府和银行的有关规章制度中已要求用VaR来分析决定资本保证金需求。1995年J.P Morgam公司推出Risk Metrics系统使得VaR迅速发展,从而大大地扩充了学术研究的范围,使支持或批评此风险测量方式的研究越来越多。在1997年,Jorion在有关VaR的文章中,将VaR定义为:
暂无评论