现有的基于深度学习的医学图像分割方法,大多是利用大量的训练数据拟合检测网络,以获得优异的检测性能。这些方法往往具有较大的模型参数,导致了检测实时性较差。为此,提出了基于局部上下文引导特征深度融合轻量级医学分割网络(local context guided feature deep fusion lightweight medical segmentation network,LCGML-net)。LCGML-net通过精确的特征选择与特征融合来减少模型拟合所需的参数数量,从而在保证检测精度的同时实现更小的模型参数,在特征提取阶段和映射阶段分别通过提取和融合目标多层次多尺度局部上下文特征来丰富特征表达和精准分割。在STARE、CHASEDB1和KITS19等多个基准数据集上开展实验,与其他方法相比,所提出的LCGML-net具有最佳的检测性能和最小的模型参数。
暂无评论