为解决标签传播的社区检测算法容易产生怪物社区和不稳定社区划分的问题,以标签熵为基础,提出一种重叠社区检测算法LEKA(Label Entropy and K-shell Algorithm in overlapping community),综合考虑了标签初始化、标签更新和标签传播的...
详细信息
为解决标签传播的社区检测算法容易产生怪物社区和不稳定社区划分的问题,以标签熵为基础,提出一种重叠社区检测算法LEKA(Label Entropy and K-shell Algorithm in overlapping community),综合考虑了标签初始化、标签更新和标签传播的各个阶段。首先,利用K-shell算法对节点进行初始化以获取节点的层次信息;其次,依据标签熵升序依次更新节点标签,在选择标签时综合节点间的层次信息和节点间的影响,在存在多个候选标签的情况下基于节点标签权重进行选取。在真实网络数据集上的实验结果表明,LEKA在运行时间较短的情况下,重叠模块度EQ(ExtendQ)相较于OCKELP(Overlapping Community detection algorithm based on K-shell and label Entropy in Label Propagation)提高了2.3%~13.2%,具有较高的准确性和稳定性,更适合挖掘网络中的重叠社区结构。
暂无评论