基于卫星高度计数据、模式数据和同化资料揭示了东印度沿岸流(East India Coastal Current, EICC)年周期上的时空分布特征,并探讨了其可能的影响机制及热盐输运。在年周期上EICC呈现3种分布状态,受季风影响,在东北季风前期(10—12月)和...
详细信息
基于卫星高度计数据、模式数据和同化资料揭示了东印度沿岸流(East India Coastal Current, EICC)年周期上的时空分布特征,并探讨了其可能的影响机制及热盐输运。在年周期上EICC呈现3种分布状态,受季风影响,在东北季风前期(10—12月)和后期(2—5月)为一致的南向(北向)流动;而6—8月EICC呈3段式分布,与另外两个时间段明显不同,表现为9°N以南、16°N以北区域的南向流动和9°—16°N区域的北向流动。前人研究认为印度东海岸的局地风应力是EICC的主要机制,本研究发现除局地风应力外,来自孟加拉湾中部的艾克曼抽吸(EkmanPumping)在全年也发挥着重要作用,并在2—5月(10—12月)驱动EICC的北向(南向)流动,而局地风应力则在10—12月有利于EICC的南向流动。EICC是孟加拉湾低盐水向赤道东印度洋和阿拉伯海输运的一个因素,在海盆间的热盐交换上发挥着重要作用。EICC的热输运在6—12月(2—5月)有利于(不利于)湾内温度的升高;盐输运则在全年都有利于孟加拉湾内盐度的增加。此外,EICC的一致南向(北向)流动以及3段式结构促进了湾内热盐的再分配,对于维持北印度洋的热量和盐度收支平衡具有重要作用。
用偏最小二乘(Partial Least Square,PLS)回归方法分析了1979~2018年影响亚马逊旱季(6~8月)降水年际变率的热带海面温度模态。第一海面温度模态解释了总方差的64%,主要表现为前期亚马逊雨季(12月至次年2月)至旱季(6~8月)热带东太平洋La ...
详细信息
用偏最小二乘(Partial Least Square,PLS)回归方法分析了1979~2018年影响亚马逊旱季(6~8月)降水年际变率的热带海面温度模态。第一海面温度模态解释了总方差的64%,主要表现为前期亚马逊雨季(12月至次年2月)至旱季(6~8月)热带东太平洋La Niña型海面温度异常演变。12月至次年2月热带东太平洋出现La Niña型海面温度冷异常;3~5月热带东太平洋冷异常增强,并在热带印度洋、热带北大西洋出现冷异常,在热带南大西洋有暖异常;6~8月热带东太平洋冷异常向东收缩;9~11月整个热带海面温度异常均快速衰退。第二海面温度模态解释了总方差的19%,主要表现为前期亚马逊雨季(12月至次年2月)至旱季(6~8月)中太平洋Modoki El Niño型增暖。12月至次年2月在热带中太平洋出现暖异常,印度洋和南大西洋同样也出现暖异常,热带中太平洋和南大西洋暖异常能持续到9~11月,而印度洋暖异常在9~11月衰减。这些结果表明,亚马逊旱季降水与热带海面温度的演变有关,当前期12月至次年2月出现La Niña(Modoki El Niño)事件、3~8月出现热带南北大西洋海面温度梯度负异常并且热带印度洋海面温度冷(暖)异常时,亚马逊旱季降水偏多。这两个海面温度模态对降水的总贡献与亚马逊旱季降水指数的相关关系高达0.92,说明亚马逊旱季降水年际变率与热带海面温度密切相关;而且这两个海面温度模态对亚马逊旱季降水的贡献还有明显的年代际变化,自1979年以来,海面温度对降水的贡献有下降趋势。还对海面温度影响亚马逊旱季降水年际变率的机制进行了分析,发现海面温度可以通过影响亚马逊地区的环流场、水汽输送以及大气对流层稳定性进而导致降水异常。第一海面温度模态能激发亚马逊低空北部气流辐合,高空北部气流辐散,容易形成异常的上升运动;同时,亚马逊对流层的异常湿静能收支也表明第一海面温度模态会使亚马逊地区对流层不稳定性增加;另外,第一海面温度模态还能使亚马逊北部出现异常水汽辐合,这都会导致亚马逊北部降水增加。第二海面温度模态激发亚马逊东南部气流辐合上升,西部气流辐散下沉;亚马逊对流层的异常湿静能收支显示第二海面温度模态使亚马逊东南部气层不稳定,中部稳定,这导致亚马逊东部降水增加。最后选取了大气模式比较计划(Atmospheric Model Intercomparison Project,AMIP6)中7个模式数据的集合平均对以上结果进行验证,发现无论是海面温度模态还是影响机制,都与再分析资料的结果基本一致。这说明以上结果是可信的,热带海面温度确实与亚马逊旱季降水有密切关系。
暂无评论