针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vecto...
详细信息
针对浮选过程变量滞后、耦合特征及建模样本数量少所导致精矿品位难以准确预测的问题,提出了一种基于改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)优化混核最小二乘支持向量机(Hybrid Kernel Least Squares Support Vector Machine,HKLSSVM)的浮选过程精矿品位预测方法.首先采集浮选现场载流X荧光品位分析仪数据作为建模变量并进行预处理,建立基于最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)的预测模型,以此构建新型混合核函数,将输入空间映射至高维特征空间,再引入改进麻雀搜索算法对模型参数进行优化,提出基于ISSA-HKLSSVM方法实现精矿品位预测,最后开发基于LabVIEW的浮选精矿品位预测系统对本文提出方法实际验证.实验结果表明,本文提出方法对于浮选过程小样本建模具有良好拟合能力,相比现有方法提高了预测准确率,可实现精矿品位的准确在线预测,为浮选过程的智能调控提供实时可靠的精矿品位反馈信息.
针对高炉炼铁过程铁水温度、Si含量、S含量、P含量等关键质量指标难以直接在线检测,且离线化验过程滞后严重的难题,建立基于建模精度综合评价与遗传参数优化的铁水质量(molten iron quality,MIQ)多输出支持向量回归(multi-output suppor...
详细信息
针对高炉炼铁过程铁水温度、Si含量、S含量、P含量等关键质量指标难以直接在线检测,且离线化验过程滞后严重的难题,建立基于建模精度综合评价与遗传参数优化的铁水质量(molten iron quality,MIQ)多输出支持向量回归(multi-output support vector regression,M–SVR)动态模型,用于对高炉铁水质量指标进行在线估计.与常规单输出SVR建模不同,M–SVR可一次确定多个分类超平面,从而可实现多元铁水质量指标的多输出建模:建模精度综合评价指标从模型估计趋势以及估计误差等方面综合评价建模性能;以建模精度综合评价指标为适应度函数,采用遗传算法对M–SVR的伸缩向量和惩罚因子参数进行全局寻优,从而获得具有最优参数的GA–M–SVR动态模型.在某钢铁厂2#高炉的工业实验表明:所提GA–M–SVR模型能够根据实时输入数据的变化对多元铁水质量参数进行准确估计.
暂无评论