3D Octave卷积模型在高空间-高光谱影像分类中的应用,可以提高多树种分类任务的精度,对提高森林管理的精细化水平具有重要意义。设计了一种结合三维Octave卷积与注意力机制的3DOC-SSAM模型,通过3D Octave卷积和空间—光谱注意力机制,提...
详细信息
3D Octave卷积模型在高空间-高光谱影像分类中的应用,可以提高多树种分类任务的精度,对提高森林管理的精细化水平具有重要意义。设计了一种结合三维Octave卷积与注意力机制的3DOC-SSAM模型,通过3D Octave卷积和空间—光谱注意力机制,提高了模型的运行效率和分类性能。研究结果表明:①3DOC-SSAM模型总体精度达到99.53%,相对于SVM、ELM、2D-CNN、3D-CNN分别提高了13.86%、18.49%、12.90%和5.36%。且平均精度AA达到99.38%,Kappa系数达0.9947。②小样本训练的情况下,总体精度和平均精度仍然能够达到96.9%和95.52%,高于对比的模型。研究结果为多树种分类任务提供了一个高效且高精度的解决方案,在林业遥感中的应用前景广阔,有助于提升森林资源管理的科学性和可持续性。
暂无评论