针对传统基于像素级的变化检测方法在变化分析中难以利用像元间的时空关系、变化检测结果精度低的问题,提出了一种基于时空自相关的建筑物变化检测方法。首先,利用形态学建筑指数(Morphological Building Index,MBI)进行建筑物提取,并...
详细信息
针对传统基于像素级的变化检测方法在变化分析中难以利用像元间的时空关系、变化检测结果精度低的问题,提出了一种基于时空自相关的建筑物变化检测方法。首先,利用形态学建筑指数(Morphological Building Index,MBI)进行建筑物提取,并通过长宽比、面积等剔除道路信息优化建筑物提取;其次,采用时空自相关模型分别构建两期MBI特征影像的时空自相关性指标值作为对应像元的相似性测度;最后,利用最大类间方差(otsu)法确定最优阈值,得到变化检测结果。实验表明,该方法所得变化检测结果更完整,漏检率和误检率均低于对比算法,该方法基本满足变化检测需求,为高分影像建筑物变化检测提供一种新的技术手段。
利用皮尔森相关系数法处理网络搜索数据,用灰狼算法(grey wolf optimizer,GWO)优化支持向量回归(support vector regression,SVR)中的参数,提出并实现一种基于网络搜索数据和GWO-SVR模型的旅游短期客流量预测模型,并用参数优化后的SVR...
详细信息
利用皮尔森相关系数法处理网络搜索数据,用灰狼算法(grey wolf optimizer,GWO)优化支持向量回归(support vector regression,SVR)中的参数,提出并实现一种基于网络搜索数据和GWO-SVR模型的旅游短期客流量预测模型,并用参数优化后的SVR对客流量进行建模预测.以四川省九寨沟和四姑娘山两个景区为例,构建GWO-SVR、ARIMA、BPNN、SVR、CS-SVR、PSO-SVR和无网络搜索数据等客流量预测模型进行实证分析.结果表明,GWO-SVR模型均优于其他模型,具有更高的预测精度.
暂无评论