精准的PM2.5小时浓度短期预测,可以有效地提高空气污染的预报预警能力.针对传统的PM2.5预测模型中存在的影响因素考虑不全面且影响因素选择方法适用性不强等问题,本文提出一种融合栈式稀疏自编码器(Stack Sparse Auto-Encoder,SSAE)和长短期记忆神经网络(Long-Short Term Memory,LSTM)的PM2.5小时浓度预测模型.SSAE-LSTM模型综合考虑了时间因素、空间因素、气象因素和空气污染物因素等多种因素对PM2.5的影响,采用SSAE以无监督方式自动提取PM2.5抽象影响特征,实现特征的压缩和降维;然后以提取的抽象特征作为LSTM模型的输入,建立PM2.5时间序列预测模型,挖掘PM2.5历史序列中的长期依赖特征.为了验证方法的有效性,本文基于2016—2018年京津冀城市群71个空气监测站点的空气数据和气象数据,建立SSAE-LSTM模型对各个站点的PM2.5浓度进行离线训练和预测实验.预测结果表明,SSAE-LSTM模型预测精度高于其它预测模型,在所有测试集上的一致性指数(IA)高达0.99,均方根误差RMSE与平均绝对误差MAE降到了13.98和7.90.此外,分析了SSAE-LSTM模型在不同季节的适用性,71个空气监测站点在春、夏、秋、冬4个季节测试集的预测值和实测值均有很好的线性关系,决定系数分别是0.86、0.92、0.96、0.93.对北京市万寿西宫站点的预测结果表明,SSAE-LSTM模型可以用于不同空气质量情况下的PM2.5小时浓度预报,且具有应用上的可行性和可靠性.
为解决传统森林资源调查与督查工作中存在的通讯盲区多、效率低以及工作量大等问题,在分析森林资源调查与督查的业务基础上,结合ArcGIS for Android、北斗短报文通讯服务和移动位置服务技术,研发了面向森林资源调查与督查的移动GIS系统...
详细信息
为解决传统森林资源调查与督查工作中存在的通讯盲区多、效率低以及工作量大等问题,在分析森林资源调查与督查的业务基础上,结合ArcGIS for Android、北斗短报文通讯服务和移动位置服务技术,研发了面向森林资源调查与督查的移动GIS系统。该系统具有基础地图、数据导入导出、位置感知、森林资源调查与录入、违法督查管理、传感器数据的接入与展示等功能,能够提升野外工作的便携性、自动性和即时性。系统在平潭综合实验区进行应用,操作界面简洁直观,系统运行稳定,取得了较好的应用效果。
暂无评论