研究如何根据已有的海量旅游信息及数据,为游客个性化推荐旅游景点具有重要意义。本文利用从Flickr网站获取的2013—2018年香港特别行政区范围内的地理标记照片来识别旅游景点,并根据游客游览顺序重建旅游轨迹。在此基础上,针对现有方法尚未考虑游客偏好在旅行过程中会发生动态变化的问题,提出一种基于隐含狄利克雷分布模型(Latent Dirichlet Allocation,LDA)和用户长短期偏好的个性化景点推荐方法(A Recommendation Method Based on LDA and User’s Long and Short-Term Preference,L-ULSP)。该方法利用LDA主题模型获取景点特征信息,挖掘景点间的相关性,再利用注意力机制和长短期记忆网络分别学习用户的长期偏好和短期偏好,最后结合长短期偏好捕捉用户偏好的动态变化。实验结果表明,L-ULSP方法所推荐的景点在命中率和平均倒数排名2个指标上均优于现有其他方法,证明了本文所提方法可以从景点序列中有效学习游客偏好,并为游客推荐下一个景点。此外,本文通过对比实验,进一步验证了同时考虑用户的长短期偏好能够更好地学习用户的偏好变化。
针对目前基于深度学习与高分辨率遥感影像的建筑物提取研究现状,本文提出了一种综合ResNet中的ResBlock残差模块和Attention注意力机制的改进型Unet网络(Res;ttentionUnet),并将其应用于高分辨率遥感影像建筑物提取,有效地提高了建筑物的提取精度。具体优化方法为:在传统的Unet语义分割网络卷积层中加入针对初高级特征加强提取的ResBlock残差模块,并在网络阶跃连接部分加入Attention注意力机制模块。其中,ResBlock残差模块使卷积后的特征图获取更多的底层信息,增强卷积结构的鲁棒性,从而防止欠拟合;Attention注意力机制可增强对建筑物区域像素的特征学习,使特征提取更完善,从而提高建筑物提取的准确率。本研究采用武汉大学季顺平团队提供的开放数据集(WHU Building Dataset)作为实验数据,并从中选取3个具有不同建筑物特征和代表性的实验区域,然后分别对不同实验区域进行预处理(包括滑动裁剪和图像增强等),最后分别使用Unet、ResUnet、AttentionUnet和Res;ttentionUnet 4种不同的网络模型对3个不同实验区进行建筑物提取实验,并对实验结果进行交叉对比分析。实验结果表明,与其他3种网络相比,本文所提出的Res;ttentionUnet在基于高分辨率遥感影像的建筑物提取中具有更高的精度,平均提取精度达到95.81%,相较于原始Unet网络提升17.94%,同时相较于仅加入残差模块的Unet网络(ResUnet)提升2.19%,能够显著地提升高分辨率遥感影像中建筑物提取的效果。
暂无评论