为了解决传统抑郁症预测模型因过于依赖单一模型而难以有效应对数据复杂性的问题,提出了一种基于ABS-Stacking算法的抑郁症预测模型。在传统Stacking模型基础上采用最佳优先搜索算法构建基分类器筛选层,以自适应选择最优的基分类器组合。通过5折交叉验证,根据各基模型在验证集上的AUC(area under curve)值对预测结果进行加权平均,使得表现较好的基模型在最终预测中贡献更大,从而提升模型的整体预测性能。在中老年结构化数据上的实验结果表明,ABS-Stacking模型在泛化能力和抑郁症预测效果上均优于单一模型和传统集成方法。该方法不仅有效解决了基分类器组合选择和性能加权的问题,还显著提高了模型的自适应性和泛化能力,为抑郁症预测提供了新的方法参考。
暂无评论