大规模多输入多输出(MIMO,multiple-inputmultiple output)技术被认为是下一代移动通信的核心技术之一,其系统增益建立在基站能够精确获知信道状态信息(CSI,channel state information)的基础上。由于天线数量显著增长,传统基于码本或...
详细信息
大规模多输入多输出(MIMO,multiple-inputmultiple output)技术被认为是下一代移动通信的核心技术之一,其系统增益建立在基站能够精确获知信道状态信息(CSI,channel state information)的基础上。由于天线数量显著增长,传统基于码本或矢量量化的反馈方案面临较大的技术挑战,而深度学习(DL,deep learning)为解决大规模MIMO系统的CSI反馈问题提供了新思路。围绕大规模MIMO系统CSI反馈关键技术展开调研,首先阐述了CSI反馈的研究背景和意义,接着构建大规模MIMO系统模型并分析CSI的稀疏特性,然后详细介绍和比较了国内外将DL技术引入CSI反馈机制中的方案,最后对基于DL的CSI反馈的未来发展趋势做了进一步展望。
为了缓解5G授权频谱资源短缺的问题,使用非授权频谱成为重要的解决方案。随着电力终端的大规模接入,面向电力业务保障的NR-U(NR in unlicensed spectrum)与Wi-Fi频谱共享成为重要的研究热点。首先,提出了一种NR-U上行传输机制,在保障Wi...
详细信息
为了缓解5G授权频谱资源短缺的问题,使用非授权频谱成为重要的解决方案。随着电力终端的大规模接入,面向电力业务保障的NR-U(NR in unlicensed spectrum)与Wi-Fi频谱共享成为重要的研究热点。首先,提出了一种NR-U上行传输机制,在保障Wi-Fi用户平均速率的同时实现了电力业务终端的数据上行传输。此外,还提出了联合传输时间和子载波分配(joint transmission time and subcarrier allocation,TTSA)的资源优化算法,以保障各类型电网业务的服务质量(quality of service,QoS),并最大化终端的总速率。将该优化问题解耦,使用近端策略优化(proximal policy optimization,PPO)为终端分配子载波。仿真结果表明,与已有算法相比,提出的TTSA资源优化算法在保障电力业务QoS和最大化终端总速率方面性能优越。
暂无评论