模型诊断方法是人工智能领域重要的系统故障自动检测方法,被广泛应用于软件故障检测和硬件诊断.近年来由于电路规模和复杂度不断增大,其诊断难度也不断增大.本文通过对电路模型特征的研究,结合LLBRStree(Last-Level Based on Reverse Se...
详细信息
模型诊断方法是人工智能领域重要的系统故障自动检测方法,被广泛应用于软件故障检测和硬件诊断.近年来由于电路规模和复杂度不断增大,其诊断难度也不断增大.本文通过对电路模型特征的研究,结合LLBRStree(Last-Level Based on Reverse Search-tree)诊断算法提出分组式诊断方法 GD(Grouped Diagnosis):首先结合电路特征确定组件的故障相关性并对电路组件进行分组,可缩减电路中需检测的规模;其次,利用分组后电路并结合非诊断解定理和SAT(SATisfiability)求解特征定位部分非诊断解,从而避免该部分的一致性检测来加速求解.本文算法可应用于电子电路故障诊断领域,并且实验结果表明该算法与LLBRS-tree算法相比求解效率平均提高了1.5倍,最多提高了3倍.
基于模型的诊断问题在人工智能领域内一直备受关注,将诊断问题转换成SAT(Satisfiable)问题成为解决基于模型诊断问题的一个重要方法.基于目前高效诊断方法 LLBRS-Tree(Last-Level Based on Reverse Search-Tree)的研究,本文提出电路分...
详细信息
基于模型的诊断问题在人工智能领域内一直备受关注,将诊断问题转换成SAT(Satisfiable)问题成为解决基于模型诊断问题的一个重要方法.基于目前高效诊断方法 LLBRS-Tree(Last-Level Based on Reverse Search-Tree)的研究,本文提出电路分块诊断方法 ACDIAG(Abstract Circuit Diagnosis)方法,对电路进行分块来缩减电路规模,利用LLBRS-Tree方法对分块后抽象电路求得极小块诊断解;提出诊断解拓展方法,结合分块后电路结构特征对每个极小块诊断解进行直接扩展得到极小诊断解,避免对抽象电路还原后才能得到所有解的问题.
暂无评论