手性分子在医药、材料、化学、生物等领域具有重要的作用,所以它们的快速获取一直是众多科研工作者研究的兴趣所在。手性分子通常有三种获取方法,分别是天然存在的手性分子进一步转化、不对称催化、动力学拆分。不对称催化和动力学拆分在过去几十年内得到了快速发展,随之而来的问题也凸显出来:比如很多反应在得到高对映选择性后的继续发展缺少了动力,逐渐远离了研究的热点;比如动力学拆分的底物类型依然显得局限性较大,能发生动力学拆分的反应的发现缺少指导性策略。为解决这些问题,我们提出了非手性底物取代基添加(Substituent Addition to Achiral Substrate,SAAS)的方法,可以为上述的多个难点和挑战提供一定的解决方案。如图1a所示,Enders,Suzuki于2006年在不对称分子内benzoin反应的研究中取得了突破[1,2];随后游书力课题组也做出了突出的工作[3,4]。遗憾的是,此反应的进一步研究未能取得突破。我们将取代基添加的方法引入这一人名反应,发展出了一系列导向多立体中心手性分子生成的分子内benzoin反应[5,6,7]。更重要的是,取代基添加法将此反应的潜力和活力重新激发出来,并揭示了分子内benzoin反应的多个新反应模式,开发出了它的更多新应用,在机理方面也取得了突破,发现了多个有别于传统认识的新观点。另一方面,也为能参与动力学拆分的反应的发现提供了新的指导方法。进一步研究标明,这一方法不仅可以应用于分子内benzoin反应,还可以应用于不对称催化领域的其他反应,所以是一个具有普遍适用性的策略。
The solvation of carbon dioxide in sea water plays an important role in the carbon circle and the world climate. The salting-out/salting-in mechanism of CO2 in electrolyte solutions still remains elusive at molecule l...
详细信息
The solvation of carbon dioxide in sea water plays an important role in the carbon circle and the world climate. The salting-out/salting-in mechanism of CO2 in electrolyte solutions still remains elusive at molecule level. The ability of ion salting-out/salting-in CO2 in electrolyte solution follows Hofmeister Series and the change of water mobility induced by salts can be predicted by the viscosity B-coefficients. In this work, the chemical potential of carbon dioxide and the dynamic properties of water in aqueous NaCl, KF and NaClO4 solutions are calculated and analyzed. According to the viscosity B-coefficients, NaClO4 (0.012) should salt out the carbon dioxide relative to in pure water, but the opposite effect is observed for it. Our simulation results suggest that the salting-in effect of NaClO4 is due to the strongly direct anion-CO2 interaction. The inconsistency between" Hofmeister Series and the viscosity B-coefficient suggests that it is not always right to indicate whether a salt belongs to salting-in or salting-out just from these properties of the salt solution in the absence of solute.
暂无评论