DBSCAN(density-based spatial clustering of applications with noise)是应用最广的密度聚类算法之一.然而,它时间复杂度过高(O(n^(2))),无法处理大规模数据.因而,对它进行加速成为一个研究热点,众多富有成效的工作不断涌现.从加速目...
详细信息
DBSCAN(density-based spatial clustering of applications with noise)是应用最广的密度聚类算法之一.然而,它时间复杂度过高(O(n^(2))),无法处理大规模数据.因而,对它进行加速成为一个研究热点,众多富有成效的工作不断涌现.从加速目标上看,这些工作大体上可分为减少冗余计算和并行化两大类;就具体加速手段而言,可分为6个主要类别:基于分布式、基于采样化、基于近似模糊、基于快速近邻、基于空间划分以及基于GPU加速技术.根据该分类,对现有工作进行了深入梳理与交叉比较,发现采用多重技术的融合加速算法优于单一加速技术;近似模糊化、并行化与分布式是当前最有效的手段;高维数据仍然难以应对.此外,对快速化DBSCAN算法在多个领域中的应用进行了跟踪报告.最后,对本领域未来的方向进行了展望.
时间差分算法(Temporal difference methods,TD)是一类模型无关的强化学习算法.该算法拥有较低的方差和可以在线(On-line)学习的优点,得到了广泛的应用.但对于一种给定的TD算法,往往只能通过调整步长参数或其他超参数来加速收敛,这也就造成了加速TD算法收敛的方法匮乏.针对此问题提出了一种利用蒙特卡洛算法(Monte Carlo methods,MC)来加速TD算法收敛的方法(Accelerate TD by MC,ATDMC).该方法不仅可以适用于绝大部分的TD算法,而且不需要改变在线学习的方式.为了证明方法的有效性,分别在同策略(On-policy)评估、异策略(Off-policy)评估和控制(Control)三个方面进行了实验.实验结果表明ATDMC方法可以有效地加速各类TD算法.
深度强化学习(Deep Reinforcement Learning,DRL)方法在大状态空间控制任务上取得了出色效果,探索问题一直是该领域的一个研究热点。现有探索算法存在盲目探索、学习慢等问题。针对以上问题,提出了一种快速收敛的最大置信上界探索(Upper Confidence Bound Exploration with Fast Convergence,FAST-UCB)方法。该方法使用UCB算法探索大状态空间,提高探索效率。为缓解Q值高估的问题、平衡探索与利用关系,加入了Q值截断技巧。之后,为平衡算法偏差与方差,使智能体(agent)快速学习,在网络模型中加入长短时记忆(Long Short Term Memory,LSTM)单元,同时使用一种改进混合蒙特卡洛(Mixed Monte Carlo,MMC)方法计算网络误差。最后,将FAST-UCB应用到深度Q网络(Deep Q Network,DQN),在控制类环境中将其与ε-贪心(ε-greedy)、UCB算法进行对比,以验证其有效性。在雅达利(Atari)2600环境中将其与噪声网络(Noisy-Network)探索、自举(Bootstrapped)探索、异步优势行动者评论家(Asynchronous Advantage Actor Critic,A3C)算法和近端策略优化(Proximal Policy Optimization,PPO)算法进行对比,以验证其泛化性。实验结果表明,FAST-UCB算法在这两类环境中均能取得优秀效果。
暂无评论