心电监测已经成为临床诊断和健康监测的重要手段.作为心电分析的基础,心电图QRS波的自动检测备受关注.但是,由于动态心电数据体量大、有噪声,目前很多方法在动态心电图QRS波的检测任务中往往表现不佳,在实际应用场景下实际准确率不到80%.针对此问题提出具有窗口结构Bi⁃LSTM(Bidirectional Long Short⁃Term Memory)网络的心电图QRS波检测方法.通过增大采样窗口,在双向的LSTM结构中添加卷积层,给模型赋予了特征提取的能力,经过样本训练就能获得可以预测的模型.卷积Bi⁃LSTM模型可以自动学习和标注心电图中QRS波的位置,解决正样本稀疏和噪音干扰的问题.实验表明,具有窗口结构Bi⁃LSTM网络的心电图QRS波检测方法在适当增大取样窗口时,可以提高预测准确度并加快收敛速度.
DBSCAN(density-based spatial clustering of applications with noise)是应用最广的密度聚类算法之一.然而,它时间复杂度过高(O(n^(2))),无法处理大规模数据.因而,对它进行加速成为一个研究热点,众多富有成效的工作不断涌现.从加速目...
详细信息
DBSCAN(density-based spatial clustering of applications with noise)是应用最广的密度聚类算法之一.然而,它时间复杂度过高(O(n^(2))),无法处理大规模数据.因而,对它进行加速成为一个研究热点,众多富有成效的工作不断涌现.从加速目标上看,这些工作大体上可分为减少冗余计算和并行化两大类;就具体加速手段而言,可分为6个主要类别:基于分布式、基于采样化、基于近似模糊、基于快速近邻、基于空间划分以及基于GPU加速技术.根据该分类,对现有工作进行了深入梳理与交叉比较,发现采用多重技术的融合加速算法优于单一加速技术;近似模糊化、并行化与分布式是当前最有效的手段;高维数据仍然难以应对.此外,对快速化DBSCAN算法在多个领域中的应用进行了跟踪报告.最后,对本领域未来的方向进行了展望.
暂无评论