前沿相关研究将相似问句识别转化为二元问句匹配识别并取得很大进展。但是在自动问答系统的实际应用场景中存在大量数据,这些方法受限于二元问句匹配识别模式,导致时效性不高。针对这一问题,受人脸识别相关研究的启发,该文提出基于语义空间距离衡量的相似问句识别方法(Semantic Space Distance Method,SSDM)。该方法将相似问句识别作为多分类问题进行训练,通过利用人脸识别任务中Margin Softmax损失函数得到语义编码模型。该语义编码模型能够将相似问句在语义空间中聚合,不相似问句在语义空间中远离。SSDM方法将相似问句识别转化成语义空间中的向量距离计算,突破二元问句匹配的方式,保证了一定的高时效性,并且仍然能够在深层语义层面对相似问句进行识别。该方法在Biendata的ASQD数据集中实验测试,取得了比基线方法更优的性能,验证了SSDM方法的有效性。
挖掘电商评论文本中的电商事件对分析用户购物行为和商品场景分类有重要帮助。该文给出电商事件的定义,将电商事件识别问题转换为序列标注问题,构建了一个基于电商评论文本的电商事件标注数据。该文首先在基于字符的BiLSTM-CRF神经网络模型上进行扩展,加入语言模型词向量(Embeddings from Language Models,ELMo)来提高识别性能。进而考虑中文字形特征,包括五笔和笔画特征。提出两种引入字形特征的新模型,即在预训练语言模型中结合事件的字形信息进行建模。实验结果表明融入字形特征的ELMo可以进一步提高模型性能。最后,该文分别使用新闻和电商领域两份大规模无标注数据训练语言模型。结果表明,电商领域语料对系统的帮助更大。
暂无评论