研究了中文名词性谓词的语义角色标注(semantic role labeling,简称SRL).在使用传统动词性谓词SRL相关特征的基础上,进一步提出了名词性谓词SRL相关的特征集.此外,探索了中文动词性谓词SRL对中文名词性谓词SRL的影响,并且联合谓词自动...
详细信息
研究了中文名词性谓词的语义角色标注(semantic role labeling,简称SRL).在使用传统动词性谓词SRL相关特征的基础上,进一步提出了名词性谓词SRL相关的特征集.此外,探索了中文动词性谓词SRL对中文名词性谓词SRL的影响,并且联合谓词自动识别实现了全自动的中文名词性谓词SRL.在中文NomBank上的实验结果表明,中文动词性谓词的SRL合理使用能够大幅度提高中文名词性谓词的SRL性能;基于正确句法树和正确谓词识别,中文名词性谓词的SRL性能F1值达到了72.67,大大优于目前国内外的同类系统;基于自动句法树和自动谓词识别,性能F1值为55.14.
分类器模型是目前识别因果关系的主要模型,该方法存在的问题是只考虑2个事件之间的关系,没有考虑同一文档中其他关联事件所包含的信息,识别结果往往存在逻辑矛盾。该文提出了一个中文事件因果关系识别的全局优化方法,该方法采用整数线性规划(integer linear programming,ILP)的推理方法,对基本逻辑关系、因果标志词、事件类型、论元信息进行有效约束,以文档为单位来优化因果关系识别。在该文标注语料上的实验结果表明:与分类器方法相比,该文提出的全局优化方法的F1值提升了5.54%。
暂无评论