得益于近期具有世界知识的大规模预训练模型的迅速发展,基于大模型的具身智能在各类任务中取得了良好的效果,展现出强大的泛化能力与在各领域内广阔的应用前景.鉴于此,对基于大模型的具身智能的工作进行了综述,首先,介绍大模型在具身智能系统中起到的感知与理解作用;其次,对大模型在具身智能中参与的需求级、任务级、规划级和动作级的控制进行了较为全面的总结;然后,对不同具身智能系统架构进行介绍,并总结了目前具身智能模型的数据来源,包括模拟器、模仿学习以及视频学习;最后,对基于大语言模型(Large language model, LLM)的具身智能系统面临的挑战与发展方向进行讨论与总结.
近年来存储行业经历了巨大的变革,以固态硬盘(solid state drive, SSD)为代表的半导体存储设备迅猛发展,在性能上显著超越了通过磁头移动寻址的机械硬盘(hard disk drive, HDD).目前支持SSD的2种协议主要包括非易失性内存主机控制器接...
详细信息
近年来存储行业经历了巨大的变革,以固态硬盘(solid state drive, SSD)为代表的半导体存储设备迅猛发展,在性能上显著超越了通过磁头移动寻址的机械硬盘(hard disk drive, HDD).目前支持SSD的2种协议主要包括非易失性内存主机控制器接口规范(nonvolatile memory express, NVMe)协议与串行SCSI(serial attached small computer system interface, SAS)协议,即SAS. NVMe是专为SSD设计的高性能存储协议,能够很大限度地发挥SSD的性能;而SAS协议则充分考虑数据中心的需求,在提供高可靠性与高可扩展性的同时,兼顾了系统性能与成本的平衡.相对于日益增速的存储介质,针对慢速存储设备所设计的软件栈在一次I/O过程中所耗费的时间开销愈发显著.针对该问题学界及工业界都相继提出了众多解决方案,例如Intel提出的高性能存储开发包(storage performance development kit, SPDK)通过将设备驱动实现在用户空间,并采用轮询感知I/O完成等方式大幅度缩短了NVMe SSD对应用程序的响应时间,极大地提升了整个系统的整体性能.然而之前的研究工作针对SAS SSD存储软件栈的优化非常有限,为此在用户空间实现了针对SAS SSD的软件栈优化.实验结果表明,该优化能够有效缩短存储设备对应用程序的响应时间,提高应用对存储设备的访存效率.此外,为了准确评估I/O栈中存储设备的时间开销,硬件性能测试工具HwPerfIO被提出,能够消除大部分软件开销的影响以测得更加准确的存储设备性能.
暂无评论