The COP9 signalosome and the regulatory lid of the 26S proteasome are both eight-subunit protein complexes which are present in most eukaryotes. There is a one-to-one relationship between the corresponding subunits of...
详细信息
The COP9 signalosome and the regulatory lid of the 26S proteasome are both eight-subunit protein complexes which are present in most eukaryotes. There is a one-to-one relationship between the corresponding subunits of the two protein complexes in terms of their size and amino acid sequences. Eight groups of subunits from the COP9 signalosome and the proteasome lid complex of different organisms are collected from all the databases at the NCBI website. The corresponding subunits of COP9 signalosome and proteasome lid complex share at least 12% amino acid identity and some conserved regions, and the conserved sites spread evenly over the entire length of the subunits, suggesting that the two complexes have a common evolutionary ancestor. Phylogenetic analyses based on the amino acid sequences of the corresponding subunits of two protein complexes indicate that every tree consists of two clades. The subunits from one of the two protein complexes of different organisms are grouped into one of the two clades respectively. The sequences of single-cell organisms are always the basal groups to that of multi-cell animal and plant species. These results imply that the duplication/divergence events of COP9 signalosome and regulatory lid of the proteasome genes have occurred before the divergence of single-cell and multi-cell eukaryotes, and the genes of the two complexes are independently evolved. The analyses of dN/dS correlation show significant Pearson's correlations between 21 and 15 pairs of subunit-encoding sequences within the COP9 signalosome and the proteasome lid complex respectively, suggesting that those subunits pairs might have related functions and interacted with one another, and resulted in co-evolution.
PPF1 is a vegetative growth related gene that encodes a putative membrane protein having high homology with Arabidopsis chloroplast thylakoid protein ALB3. Immunoelectron microscopic assay showed that PPF1 was mainly ...
详细信息
PPF1 is a vegetative growth related gene that encodes a putative membrane protein having high homology with Arabidopsis chloroplast thylakoid protein ALB3. Immunoelectron microscopic assay showed that PPF1 was mainly localized in the thylakold membrane and was highly expressed in well-developed chloroplasts of short day (SD) grown G2 pea while having a very low abundance in chloroplasts of long day (LD) grown plants two weeks after flowering. Comparison of the leaf senescence processes in transgenic Arabidopsis and wild type plants revealed that overexpression of PPF1 delayed leaf senescence, while the depression of its Arabidopsts homologue (ALB3) with PPF1 antisense mRNA accelerated leaf senescence obviously. Ultrastructural analysis of transgenic Arabidopsis plants showed that when PPF1 was overexpressed in Arabidopsis, the chloroplasts were bigger and had much more grana and stroma thylakoid membranes than those of wild type plants. On the contrary, when PPF1 was expressed in antisense orientation to reduce the level of PPF1 homologue in Arabidopsis, the transgenic plants had smaller chloroplasts With less grana. and poorly developed thylakoid membrane systems. These results suggested that the developmental status of chloroplasts was positively correlated with the level of PPF1 or its Arabidopsts homologue, ALB3. Our results suggested that PPF1 gene might regulate plant development by controlling chloroplast development.
暂无评论