为提升高速公路合流区交通运行效率及驾乘人员舒适性,在保障安全的前提下,面向人工驾驶车辆(Human Driven Vehicles,HDV)和智能网联车辆(Connected and Autonomous Vehicles,CAV)混行的异质交通流环境,提出高速公路CAV合流次序优化与轨...
详细信息
为提升高速公路合流区交通运行效率及驾乘人员舒适性,在保障安全的前提下,面向人工驾驶车辆(Human Driven Vehicles,HDV)和智能网联车辆(Connected and Autonomous Vehicles,CAV)混行的异质交通流环境,提出高速公路CAV合流次序优化与轨迹规划方法.首先,以车辆通行时间和延误作为合流区交通运行效率表征指标,建立合流次序优化函数,采用并调整蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)算法,获得最优合流次序;其次,依据合流次序,建立最小化加速度和急动度的CAV合流轨迹规划(Minimize Acceleration and Jerk Trajectory Planning,MAJTP)函数,运用最优控制理论,求解车辆纵向最优轨迹解析解,进而形成高速公路合流区CAV协同控制方法;最后,联合运用SUMO软件和PYTHON库,对本文所提方法进行交通仿真验证.仿真结果表明:在CAV渗透率分别为0.2、0.4、0.6和0.8时,相较于先进先出(First In First Out,FIFO)算法,基于MCTS算法的合流次序优化方法累积延误分别降低5.75%、8.84%、12.24%和11.06%;相较于最小化加速度的车辆轨迹规划(Minimize Acceleration Trajectory Planning,MATP)方法,MAJTP方法平均急动度更趋近于零,驾乘人员舒适性有所提升,验证了方法的有效性.研究成果可为高速公路合流区交通运行管控研究提供理论支持.
随着纤维增强复合材料(Fiber Reinforced Polymer, FRP)在既有建筑结构加固领域的广泛应用,工程实践中对其加固特性愈发重视。本文综述了纤维增强复合材料(FRP)与混凝土粘结界面抗剪性能的研究进展。详细讨论了影响界面抗剪性能的各种因素,包括混凝土强度、FRP粘结长度、粘结宽度、粘结厚度及其弹性模量等。此外,本文介绍了灰色关联理论在分析界面粘结强度影响因素中的应用,通过建立试验数据库和关联度计算,确定了各参数对极限承载力的影响程度。最后,对现有的FRP-混凝土界面粘结强度模型进行了讨论,指出当前模型在预测实际工程中界面性能方面的局限性,并强调了考虑混凝土老化、损伤和钢筋锈蚀等因素的重要性。本研究为FRP加固混凝土结构的工程应用提供了科学的理论依据,并为未来研究指明了方向。The widespread application of Fiber Reinforced Polymer (FRP) sheets in the reinforcement of existing building structures has led to increased emphasis on their reinforcing characteristics. This paper reviews the research progress on the shear performance of the bond interface between FRP and concrete. Various factors influencing the interface shear performance are discussed in detail, including concrete strength, FRP bond length, bond width, bond thickness, and elastic modulus. Additionally, the application of Grey Relational Analysis (GRA) in evaluating the influential factors of bond strength is introduced. Through the establishment of an experimental database and correlation degree calculations, the impact of each parameter on ultimate bearing capacity is determined. Finally, the existing bond strength models for the FRP-concrete interface are discussed, highlighting the limitations of current models in predicting interface performance in practical engineering scenarios. The importance of considering factors such as concrete aging, damage, and reinforcement corrosion is emphasized. This study provides a scientific theoretical basis for the engineering application of FRP in concrete reinforcement and points out directions for future research.
暂无评论